Spatio-Temporal Adaptive Weighted Fusion Network for Compressed Video Quality Enhancement

被引:1
作者
Zhang, Tingrong [1 ]
He, Xiaohai [1 ]
Teng, Qizhi [1 ]
Cheng, Junxiong [1 ]
Ren, Chao [1 ]
机构
[1] Sichuan Univ, Coll Elect & Informat Engn, Chengdu 610065, Peoples R China
基金
中国国家自然科学基金;
关键词
Spatio-temporal information; compressed video; video quality enhancement; deep learning; EFFICIENCY;
D O I
10.1109/TCSII.2024.3444052
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In recent years, many deep learning-based methods for improving the quality of compressed video have emerged, some of which utilize multiple reference frames to enhance the target frame. However, most of these methods directly aggregate the temporal information of the reference frames, ignoring the spatial information within the target frame. In this brief, we propose a spatio-temporal information adaptive weighted fusion network (STAWFN) to enhance compressed video quality by dynamically integrating spatial information and temporal information. Specifically, we utilize well-designed temporal feature extractor (TFE) and spatial feature extractor (SFE) to extract temporal and spatial information, respectively. And then an adaptive weighted feature fusion module is employed to effectively fuse temporal information and spatial information. In addition, we construct multi-channel enhanced residual block to refine the fused features for better enhancement capability. Comprehensive test results on HEVC-compressed videos show that the proposed method can significantly enhance the objective and subjective quality of compressed videos and reach state-of-the-art performance.
引用
收藏
页码:5064 / 5068
页数:5
相关论文
共 50 条
[21]   A Spatio-Temporal Attentive Network for Video-Based Crowd Counting [J].
Avvenuti, Marco ;
Bongiovanni, Marco ;
Ciampi, Luca ;
Falchi, Fabrizio ;
Gennaro, Claudio ;
Messina, Nicola .
2022 27TH IEEE SYMPOSIUM ON COMPUTERS AND COMMUNICATIONS (IEEE ISCC 2022), 2022,
[22]   Attention Embedded Spatio-Temporal Network for Video Salient Object Detection [J].
Huang, Lili ;
Yan, Pengxiang ;
Li, Guanbin ;
Wang, Qing ;
Lin, Liang .
IEEE ACCESS, 2019, 7 :166203-166213
[23]   A compressed video quality enhancement algorithm based on CNN and transformer hybrid network [J].
Li, Hao ;
He, Xiaohai ;
Xiong, Shuhua ;
He, Haibo ;
Chen, Honggang .
JOURNAL OF SUPERCOMPUTING, 2025, 81 (01)
[24]   DEFORMABLE CONVOLUTION DENSE NETWORK FOR COMPRESSED VIDEO QUALITY ENHANCEMENT [J].
Liu, Jiahui ;
Zhou, Mingcai ;
Xiao, Meng .
2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, :1930-1934
[25]   A Spatio-Temporal Graph Convolutional Network for Air Quality Prediction [J].
Li, Pengfei ;
Zhang, Tong ;
Jin, Yantao .
SUSTAINABILITY, 2023, 15 (09)
[26]   Reconstruction flow recurrent network for compressed video quality enhancement [J].
Wang, Zhengning ;
Liu, Xuhang ;
Wang, Chuan ;
Jiang, Ting ;
Zeng, Tianjiao ;
Zeng, Zhenni ;
Wang, Guoqing ;
Liu, Shuaicheng .
PATTERN RECOGNITION, 2024, 155
[27]   Patch-Wise Spatial-Temporal Quality Enhancement for HEVC Compressed Video [J].
Ding, Qing ;
Shen, Liquan ;
Yu, Liangwei ;
Yang, Hao ;
Xu, Mai .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 :6459-6472
[28]   STFN: Spatio-Temporal Fusion Network to Detect Ethereum Phishing Scams [J].
Xu, Yufeng ;
Zhang, Lun ;
Vural, Turan ;
Qian, Peng ;
Wang, Yanbin ;
Fan, Yuqing ;
Li, Ming ;
Tang, Xueyan ;
Cao, Zheng .
PROCEEDINGS OF 2023 7TH INTERNATIONAL CONFERENCE ON ELECTRONIC INFORMATION TECHNOLOGY AND COMPUTER ENGINEERING, EITCE 2023, 2023, :599-605
[29]   A spatio-temporal fusion deep learning network with application to lightning nowcasting [J].
Zhou, Changhai ;
Fan, Ling ;
Neri, Ferrante .
INTEGRATED COMPUTER-AIDED ENGINEERING, 2024, 31 (03) :233-247
[30]   Spatio-Temporal Super-Resolution from Compressed Video Employing Global and Local Motion [J].
Chen, Yue-Meng ;
Bajic, Ivan V. .
2011 IEEE PACIFIC RIM CONFERENCE ON COMMUNICATIONS, COMPUTERS AND SIGNAL PROCESSING (PACRIM), 2011, :907-912