Spatio-Temporal Adaptive Weighted Fusion Network for Compressed Video Quality Enhancement

被引:1
作者
Zhang, Tingrong [1 ]
He, Xiaohai [1 ]
Teng, Qizhi [1 ]
Cheng, Junxiong [1 ]
Ren, Chao [1 ]
机构
[1] Sichuan Univ, Coll Elect & Informat Engn, Chengdu 610065, Peoples R China
基金
中国国家自然科学基金;
关键词
Spatio-temporal information; compressed video; video quality enhancement; deep learning; EFFICIENCY;
D O I
10.1109/TCSII.2024.3444052
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In recent years, many deep learning-based methods for improving the quality of compressed video have emerged, some of which utilize multiple reference frames to enhance the target frame. However, most of these methods directly aggregate the temporal information of the reference frames, ignoring the spatial information within the target frame. In this brief, we propose a spatio-temporal information adaptive weighted fusion network (STAWFN) to enhance compressed video quality by dynamically integrating spatial information and temporal information. Specifically, we utilize well-designed temporal feature extractor (TFE) and spatial feature extractor (SFE) to extract temporal and spatial information, respectively. And then an adaptive weighted feature fusion module is employed to effectively fuse temporal information and spatial information. In addition, we construct multi-channel enhanced residual block to refine the fused features for better enhancement capability. Comprehensive test results on HEVC-compressed videos show that the proposed method can significantly enhance the objective and subjective quality of compressed videos and reach state-of-the-art performance.
引用
收藏
页码:5064 / 5068
页数:5
相关论文
共 50 条
[11]   Spatio-Temporal Inference Transformer Network for Video Inpainting [J].
Tudavekar, Gajanan ;
Saraf, Santosh S. ;
Patil, Sanjay R. .
INTERNATIONAL JOURNAL OF IMAGE AND GRAPHICS, 2023, 23 (01)
[12]   Foreground Object Detection in Visual Surveillance With Spatio-Temporal Fusion Network [J].
Kim, Jae-Yeul ;
Ha, Jong-Eun .
IEEE ACCESS, 2022, 10 :122857-122869
[13]   Adaptive and effective spatio-temporal modelling for offensive video classification using deep neural network [J].
Chelliah, Balika J. J. ;
Harshitha, K. ;
Pandey, Saharsh .
INTERNATIONAL JOURNAL OF INTELLIGENT ENGINEERING INFORMATICS, 2023, 11 (01) :19-34
[14]   Unsupervised Video Prediction Network with Spatio-temporal Deep Features [J].
Jin, Beibei ;
Zhou, Rong ;
Zhang, Zhisheng ;
Dai, Min .
PROCEEDINGS OF THE 2018 25TH INTERNATIONAL CONFERENCE ON MECHATRONICS AND MACHINE VISION IN PRACTICE (M2VIP), 2018, :19-24
[15]   Spatio-temporal propagation and reconstruction for low-light video enhancement [J].
Ye, Jing ;
Qiu, Changzhen ;
Zhang, Zhiyong .
DIGITAL SIGNAL PROCESSING, 2023, 139
[16]   Robust Gait Recognition Based on Spatio-Temporal Fusion Network [J].
Hongru Wang ;
Xinde Xu .
Neural Processing Letters, 2023, 55 :11785-11805
[17]   Robust Gait Recognition Based on Spatio-Temporal Fusion Network [J].
Wang, Hongru ;
Xu, Xinde .
NEURAL PROCESSING LETTERS, 2023, 55 (09) :11785-11805
[18]   Interactive spatio-temporal feature learning network for video foreground detection [J].
Hongrui Zhang ;
Huan Li .
Complex & Intelligent Systems, 2022, 8 :4251-4263
[19]   Interactive spatio-temporal feature learning network for video foreground detection [J].
Zhang, Hongrui ;
Li, Huan .
COMPLEX & INTELLIGENT SYSTEMS, 2022, 8 (05) :4251-4263
[20]   Video spatio-temporal generative adversarial network for local action generation [J].
Liu, Xuejun ;
Guo, Jiacheng ;
Cui, Zhongji ;
Liu, Ling ;
Yan, Yong ;
Sha, Yun .
JOURNAL OF ELECTRONIC IMAGING, 2023, 32 (05)