Lithium-ion batteries remain a cornerstone technology in the era of rapid growth in renewable energy use and electric transportation. Their versatility, high specific capacity, and energy efficiency have made lithium-ion batteries the primary choice for a wide range of applications, from portable electronics to large-scale energy storage systems. However, global challenges related to their performance, durability, and environmental impact drive the scientific community to seek innovative solutions. One of the fundamental issues is the degradation of lithium-ion batteries performance during operation, which is associated with structural changes in electrode materials, the dissolution of active components, and the formation of side phases at the electrode-electrolyte interface. Cathode materials are particularly vulnerable to these processes, limiting their lifespan and reducing capacity during prolonged cycling. Given the increasing demand for batteries with higher energy density and longevity, it is essential to reconsider design approaches focused on enhancing stability and improving efficiency. Surface modification of cathode materials is one of the promising strategies to overcome these limitations. This approach mitigates the negative effects of cathode-electrolyte interactions, enhances lithium-ion transport, and improves the thermal stability of materials. This review discusses modern methods for the surface modification of cathode materials, their impact on key battery performance parameters, and the prospects for further research. The work highlights the importance of these strategies in addressing global challenges related to sustainability and energy efficiency.