Convergence of a particle Monte Carlo algorithm for scalar conservation laws

被引:0
作者
Towers, John D. [1 ]
机构
[1] MiraCosta Coll, 3333 Manchester Ave, Cardiff By The Sea, CA 92007 USA
来源
MONTE CARLO METHODS AND APPLICATIONS | 2025年 / 31卷 / 01期
关键词
Monte Carlo; conservation law; Lax-Friedrichs; particle method; FINITE-VOLUME METHODS; SYSTEMS;
D O I
10.1515/mcma-2025-2002
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The subject of this paper is a Monte Carlo algorithm for scalar conservation laws proposed in [L. Pareschi and M. Sea & iuml;d, A new Monte Carlo approach for conservation laws and relaxation systems, Computational Science-ICCS 2004. Part II, Lecture Notes in Comput. Sci. 3037, Springer, Berlin 2004, 276-283]. The algorithm is a stochastic particle method based on a probabilistic interpretation of the Jin-Xin relaxation formulation of conservation laws. We prove convergence as the number of particles approaches infinity, and the spatial and temporal mesh sizes approach zero, assuming that the number of particles approaches infinity at a rate sufficiently high compared to the rate that the mesh size approaches zero. For the case where the solution can take either sign, our version of the algorithm is novel. We present two numerical examples as evidence of convergence.
引用
收藏
页码:59 / 73
页数:15
相关论文
共 27 条
[1]  
Abgrall R, 2017, HANDB NUM ANAL, V18, P507, DOI 10.1016/bs.hna.2016.11.003
[2]   Gradient-Based Monte Carlo Methods for Relaxation Approximations of Hyperbolic Conservation Laws [J].
Bertaglia, Giulia ;
Pareschi, Lorenzo ;
Caflisch, Russel E. .
JOURNAL OF SCIENTIFIC COMPUTING, 2024, 100 (03)
[3]   A stochastic particle method for the McKean-Vlasov and the Burgers equation [J].
Bossy, M ;
Talay, D .
MATHEMATICS OF COMPUTATION, 1997, 66 (217) :157-192
[4]  
Caflisch R. E., 1998, Acta Numerica, V7, P1, DOI 10.1017/S0962492900002804
[5]   RANDOM CHOICE SOLUTION OF HYPERBOLIC SYSTEMS [J].
CHORIN, AJ .
JOURNAL OF COMPUTATIONAL PHYSICS, 1976, 22 (04) :517-533
[6]   MONOTONE-DIFFERENCE APPROXIMATIONS FOR SCALAR CONSERVATION-LAWS [J].
CRANDALL, MG ;
MAJDA, A .
MATHEMATICS OF COMPUTATION, 1980, 34 (149) :1-21
[7]  
Dimarco G, 2006, COMMUN MATH SCI, V4, P155
[8]  
Holden H., 2002, FRONT TRACKING HYPER
[9]   On multilevel Monte Carlo methods for deterministic and uncertain hyperbolic systems [J].
Hu, Junpeng ;
Jin, Shi ;
Li, Jinglai ;
Zhang, Lei .
JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 475
[10]   THE RELAXATION SCHEMES FOR SYSTEMS OF CONSERVATION-LAWS IN ARBITRARY SPACE DIMENSIONS [J].
JIN, S ;
XIN, ZP .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1995, 48 (03) :235-276