Efficient quantum circuits based on the quantum natural gradient

被引:0
|
作者
Roy, Ananda [1 ]
Erramilli, Sameer [1 ]
Konik, Robert M. [2 ]
机构
[1] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA
[2] Brookhaven Natl Lab, Div Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA
来源
PHYSICAL REVIEW RESEARCH | 2024年 / 6卷 / 04期
关键词
D O I
10.1103/PhysRevResearch.6.043083
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Efficient preparation of arbitrary entangled quantum states is crucial for quantum computation. This is particularly important for noisy intermediate-scale quantum simulators relying on variational hybrid quantum-classical algorithms. To that end, we propose symmetry-conserving modified quantum approximate optimization algorithm (SCom-QAOA) circuits. The depths of these circuits depend not only on the desired fidelity to the target state but also on the amount of entanglement the state contains. The parameters of the SCom-QAOA circuits are optimized using the quantum natural gradient method based on the Fubini-Study metric. The SCom-QAOA circuit transforms an unentangled state into a ground state of a gapped one-dimensional Hamiltonian with a circuit depth that depends not on the system size but rather on the finite correlation length. In contrast, the circuit depth grows proportionally to the system size for preparing low-lying states of critical one-dimensional systems. Even in the latter case, SCom-QAOA circuits with depth less than the system size were sufficient to generate states with fidelity in excess of 99%, which is relevant for near-term applications. The proposed scheme enlarges the set of the initial states accessible for variational quantum algorithms and widens the scope of investigation of nonequilibrium phenomena in quantum simulators.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Quantum natural gradient generalized to noisy and nonunitary circuits
    Koczor, Balint
    Benjamin, Simon C.
    PHYSICAL REVIEW A, 2022, 106 (06)
  • [2] Tight and Efficient Gradient Bounds for Parameterized Quantum Circuits
    Letcher, Alistair
    Woerner, Stefan
    Zoufal, Christa
    QUANTUM, 2024, 8
  • [3] Quantum Natural Gradient
    Stokes, James
    Izaac, Josh
    Killoran, Nathan
    Carleo, Giuseppe
    QUANTUM, 2020, 4
  • [4] Efficient quantum circuits for quantum computational chemistry
    Yordanov, Yordan S.
    Arvidsson-Shukur, David R. M.
    Barnes, Crispin H. W.
    PHYSICAL REVIEW A, 2020, 102 (06)
  • [5] Efficient quantum circuits for Szegedy quantum walks
    Loke, T.
    Wang, J. B.
    ANNALS OF PHYSICS, 2017, 382 : 64 - 84
  • [6] Efficient circuits for quantum walks
    Chiang, Chen-Fu
    Nagaj, Daniel
    Wocjan, Pawel
    Quantum Information and Computation, 2010, 10 (5-6): : 420 - 434
  • [7] EFFICIENT UNIVERSAL QUANTUM CIRCUITS
    Bera, Debajyoti
    Fenner, S.
    Green, F.
    Homer, S.
    QUANTUM INFORMATION & COMPUTATION, 2010, 10 (1-2) : 16 - 27
  • [8] Efficient universal quantum circuits
    Bera, Debajyoti
    Fenner, S.
    Green, F.
    Homer, S.
    Quantum Information and Computation, 2010, 10 (1-2): : 16 - 27
  • [9] EFFICIENT CIRCUITS FOR QUANTUM WALKS
    Chiang, Chen-Fu
    Nagaj, Daniel
    Wocjan, Pawel
    QUANTUM INFORMATION & COMPUTATION, 2010, 10 (5-6) : 420 - 434
  • [10] Efficient Universal Quantum Circuits
    Bera, Debajyoti
    Fenner, Stephen
    Green, Frederic
    Homer, Steve
    COMPUTING AND COMBINATORICS, PROCEEDINGS, 2009, 5609 : 418 - +