A whole-brain functional connectivity model of Alzheimer's disease pathology

被引:0
作者
Prakash, Ruchika S. [1 ,2 ]
Mckenna, Michael R. [1 ]
Gbadeyan, Oyetunde [1 ]
Shankar, Anita R. [1 ]
Pugh, Erika A. [1 ]
Teng, James [1 ,2 ]
Andridge, Rebecca [3 ]
Berry, Anne [4 ]
Scharre, Douglas W. [5 ]
机构
[1] Ohio State Univ, Dept Psychol, 62 Psychol Bldg,1835 Neil Ave, Columbus, OH 43210 USA
[2] Ohio State Univ, Ctr Cognit & Behav Brain Imaging, Columbus, OH USA
[3] Ohio State Univ, Div Biostat, Columbus, OH USA
[4] Brandeis Univ, Dept Psychol, Waltham, MA 02453 USA
[5] Ohio State Univ, Wexner Med Ctr, Dept Neurol, Div Cognit Neurol, Columbus, OH 43210 USA
基金
美国国家卫生研究院;
关键词
cognition; connectome-based predictive modeling; distributed networks; functional connectivity; resting-state; NETWORK CONNECTIVITY; COGNITIVE COMPOSITE; DEFAULT MODE; FMRI; TAU; REGISTRATION; INDIVIDUALS; CONNECTOME; ATTENTION; PATTERNS;
D O I
10.1002/alz.14349
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
INTRODUCTIONAlzheimer's disease (AD) is characterized by the presence of two proteinopathies, amyloid and tau, which have a cascading effect on the functional and structural organization of the brain.METHODSIn this study, we used a supervised machine learning technique to build a model of functional connections that predicts cerebrospinal fluid (CSF) p-tau/A beta 42 (the PATH-fc model). Resting-state functional magnetic resonance imaging (fMRI) data from 289 older adults in the Alzheimer's Disease Neuroimaging Initiative (ADNI) were utilized for this model.RESULTSWe successfully derived the PATH-fc model to predict the ratio of p-tau/A beta 42 as well as cognitive functioning in older adults across the spectrum of healthy and pathological aging. However, the in-sample fit magnitude was low, indicating a need for further model development.DISCUSSIONOur pathology-based model of functional connectivity included representation from multiple canonical networks of the brain with intra-network connectivity associated with low pathology and inter-network connectivity associated with higher levels of pathology.Highlights Whole-brain functional connectivity model (PATH-fc) is linked to AD pathophysiology. The PATH-fc model predicts performance in multiple domains of cognitive functioning. The PATH-fc model is a distributed model including representation from all canonical networks.
引用
收藏
页数:12
相关论文
共 59 条
[1]   Machine learning for neuroirnaging with scikit-learn [J].
Abraham, Alexandre ;
Pedregosa, Fabian ;
Eickenberg, Michael ;
Gervais, Philippe ;
Mueller, Andreas ;
Kossaifi, Jean ;
Gramfort, Alexandre ;
Thirion, Bertrand ;
Varoquaux, Gael .
FRONTIERS IN NEUROINFORMATICS, 2014, 8
[2]   Effects of spatial smoothing on functional brain networks [J].
Alakorkko, Tuomas ;
Saarimaki, Heini ;
Glerean, Enrico ;
Saramaki, Jari ;
Korhonen, Onerva .
EUROPEAN JOURNAL OF NEUROSCIENCE, 2017, 46 (09) :2471-2480
[3]   2023 Alzheimer's disease facts and figures [J].
不详 .
ALZHEIMERS & DEMENTIA, 2023, 19 (04) :1598-1695
[4]   Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain [J].
Avants, B. B. ;
Epstein, C. L. ;
Grossman, M. ;
Gee, J. C. .
MEDICAL IMAGE ANALYSIS, 2008, 12 (01) :26-41
[5]   A component based noise correction method (CompCor) for BOLD and perfusion based fMRI [J].
Behzadi, Yashar ;
Restom, Khaled ;
Liau, Joy ;
Liu, Thomas T. .
NEUROIMAGE, 2007, 37 (01) :90-101
[6]   Loss of Intranetwork and Internetwork Resting State Functional Connections with Alzheimer's Disease Progression [J].
Brier, Mathew R. ;
Thomas, Jewell B. ;
Snyder, Abraham Z. ;
Benzinger, Tammie L. ;
Zhang, Dongyang ;
Raichle, Marcus E. ;
Holtzman, David M. ;
Morris, John C. ;
Ances, Beau M. .
JOURNAL OF NEUROSCIENCE, 2012, 32 (26) :8890-8899
[7]   Functional connectivity and graph theory in preclinical Alzheimer's disease [J].
Brier, Matthew R. ;
Thomas, Jewell B. ;
Fagan, Anne M. ;
Hassenstab, Jason ;
Holtzman, David M. ;
Benzinger, Tammie L. ;
Morris, John C. ;
Ances, Beau M. .
NEUROBIOLOGY OF AGING, 2014, 35 (04) :757-768
[8]   Cortical Hubs Revealed by Intrinsic Functional Connectivity: Mapping, Assessment of Stability, and Relation to Alzheimer's Disease [J].
Buckner, Randy L. ;
Sepulcre, Jorge ;
Talukdar, Tanveer ;
Krienen, Fenna M. ;
Liu, Hesheng ;
Hedden, Trey ;
Andrews-Hanna, Jessica R. ;
Sperling, Reisa A. ;
Johnson, Keith A. .
JOURNAL OF NEUROSCIENCE, 2009, 29 (06) :1860-1873
[9]   Default mode network connectivity is linked to cognitive functioning and CSF Aβ1-42 levels in Alzheimer's disease [J].
Celebi, Ozlem ;
Uzdogan, Andac ;
Oguz, Kader Karli ;
Has, Arzu Ceylan ;
Dolgun, Anil ;
Cakmakli, Gul Yalcin ;
Akbiyik, Filiz ;
Elibol, Bulent ;
Saka, Esen .
ARCHIVES OF GERONTOLOGY AND GERIATRICS, 2016, 62 :125-132
[10]   Preferential degradation of cognitive networks differentiates Alzheimer's disease from ageing [J].
Chhatwal, Jasmeer P. ;
Schultz, Aaron P. ;
Johnson, Keith A. ;
Hedden, Trey ;
Jaimes, Sehily ;
Benzinger, Tammie L. S. ;
Jack, Clifford, Jr. ;
Ances, Beau M. ;
Ringman, John M. ;
Marcus, Daniel S. ;
Ghetti, Bernardino ;
Farlow, Martin R. ;
Danek, Adrian ;
Levin, Johannes ;
Yakushev, Igor ;
Laske, Christoph ;
Koeppe, Robert A. ;
Galasko, Douglas R. ;
Xiong, Chengjie ;
Masters, Colin L. ;
Schofield, Peter R. ;
Kinnunen, Kirsi M. ;
Salloway, Stephen ;
Martins, Ralph N. ;
McDade, Eric ;
Cairns, Nigel J. ;
Buckles, Virginia D. ;
Morris, John C. ;
Bateman, Randall ;
Sperling, Reisa A. .
BRAIN, 2018, 141 :1486-1500