Advances in aqueous zinc-ion battery systems: Cathode materials and chemistry

被引:6
|
作者
Fan, Yulong [1 ]
Wang, Qingping [1 ]
Xie, Yingying [1 ]
Zhou, Naigen [1 ]
Yang, Yang [3 ]
Ding, Yichun [1 ]
Wei, Yen [4 ]
Qu, Guoxing [1 ,2 ]
机构
[1] Nanchang Univ, Sch Phys & Mat Sci, Nanchang 330031, Jiangxi, Peoples R China
[2] Nankai Univ, Key Lab Adv Energy Mat Chem, Minist Educ, Tianjin 300071, Peoples R China
[3] Tsinghua Univ, Inst Nucl & New Energy Technol, Beijing 100084, Peoples R China
[4] Tsinghua Univ, Dept Chem, Key Lab Bioorgan Phosphorus Chem & Chem Biol, Minist Educ, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Aqueous zinc ion battery; Cathode; Optimization strategy; Energy storage mechanism; HIGH-PERFORMANCE CATHODE; TRIPHENYLAMINE-BASED POLYMER; PRUSSIAN BLUE ANALOGS; HIGH-CAPACITY; CYCLE LIFE; COPPER HEXACYANOFERRATE; STORAGE MECHANISM; ORGANIC CATHODE; ENERGY-STORAGE; NANOSHEETS;
D O I
10.1016/j.pmatsci.2024.101393
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Renewable energy has been extensively developed to curb the greenhouse effect and reduce carbon dioxide emissions. Nevertheless, their applications are greatly limited due to the intermittence and instability nature. Therefore, reasonably store and distribution of new energy have become a widespread concern. Among various energy storage technologies, lithium-ion battery technology has achieved great success, but the scarcity of lithium resources and the use of toxic and flammable organic electrolytes have limited its further development. Oppositely, aqueous zinc ion batteries (AZIBs) have advantages of safety, abundant resources, low cost, and the potential to store energy at the power plant level. However, the low capacity, poor cycle stability, and low voltage of cathode materials have become one of the limiting factors for the application of AZIBs. Herein, we systematically summarize and discuss the reported cathode materials, including manganese-based oxides, vanadium-based compounds, Prussian blue analogues, organics, MXenes, transition metal chalcogenides, layered double hydroxides, and others. Their developments, challenges, and feasible modification strategies are thoroughly analyzed. In addition, we also summarize and compare the proposed energy storage mechanisms of cathode materials. Finally, we propose potential research directions in the future for cathode materials, and provide essential guidance for the development of high-performance AZIBs.
引用
收藏
页数:53
相关论文
共 50 条
  • [21] Promising zinc-ion battery cathode created
    Jacoby, Mitch
    CHEMICAL & ENGINEERING NEWS, 2016, 94 (35) : 13 - 13
  • [22] Research Progress of Cathode Materials for Aqueous Zinc Ion Battery
    Cao P.
    Liu Y.
    Chen N.
    Tang W.
    Li F.
    Xia Y.
    Sun A.
    Cailiao Daobao/Materials Reports, 2022, 36 (23):
  • [23] Microstructural Engineering of Cathode Materials for Advanced Zinc-Ion Aqueous Batteries
    Pam, Mei Er
    Yan, Dong
    Yu, Juezhi
    Fang, Daliang
    Guo, Lu
    Li, Xue Liang
    Li, Tian Chen
    Lu, Xunyu
    Ang, Lay Kee
    Amal, Rose
    Han, Zhaojun
    Yang, Hui Ying
    ADVANCED SCIENCE, 2021, 8 (01)
  • [24] Origin of electrochemical activation on vanadium hexacyanoferrate cathode for aqueous zinc-ion battery
    Kokits, Olga
    Aniskevich, Yauhen
    Mazanik, Alexander
    Yakimenko, Oleg
    Ragoisha, Genady
    Myung, Seung-Taek
    Streltsov, Eugene
    ENERGY STORAGE MATERIALS, 2023, 63
  • [25] Research status and prospects of cathode materials for aqueous zinc-ion batteries
    Yang W.
    Xie X.
    Wu R.
    Tian H.
    Wang X.
    Tang W.
    Deng Y.
    Liu R.
    Meitan Xuebao/Journal of the China Coal Society, 2022, 47 (09): : 3351 - 3364
  • [26] Recent Progress on Phosphate Cathode Materials for Aqueous Zinc-Ion Batteries
    Ou, Linna
    Ou, Huihuang
    Qin, Mulan
    Liu, Zhexuan
    Fang, Guozhao
    Cao, Xinxin
    Liang, Shuquan
    CHEMSUSCHEM, 2022, 15 (19)
  • [27] Binary and Ternary Manganese Dioxide Composites Cathode for Aqueous Zinc-ion Battery
    Zhao, Ling
    Dong, Liubing
    Liu, Wenbao
    Xu, Chengjun
    CHEMISTRYSELECT, 2018, 3 (44): : 12661 - 12665
  • [28] Advances in manganese-based cathode electrodes for aqueous zinc-ion batteries
    Luo, Haixiang
    Zhang, Hui-Juan
    Tao, Yiming
    Yao, Wenli
    Xue, Yuhua
    FRONTIERS IN ENERGY, 2025,
  • [29] Rechargeable Aqueous Zinc-Ion Battery Based on Porous Framework Zinc Pyrovanadate Intercalation Cathode
    Xia, Chuan
    Guo, Jing
    Lei, Yongjiu
    Liang, Hanfeng
    Zhao, Chao
    Alshareef, Husam N.
    ADVANCED MATERIALS, 2018, 30 (05)
  • [30] Mixed copper-zinc hexacyanoferrates as cathode materials for aqueous zinc-ion batteries
    Kasiri, Ghoncheh
    Glenneberg, Jens
    Hashemi, Amir Bani
    Kun, Robert
    La Mantia, Fabio
    ENERGY STORAGE MATERIALS, 2019, 19 : 360 - 369