Advances in aqueous zinc-ion battery systems: Cathode materials and chemistry

被引:6
|
作者
Fan, Yulong [1 ]
Wang, Qingping [1 ]
Xie, Yingying [1 ]
Zhou, Naigen [1 ]
Yang, Yang [3 ]
Ding, Yichun [1 ]
Wei, Yen [4 ]
Qu, Guoxing [1 ,2 ]
机构
[1] Nanchang Univ, Sch Phys & Mat Sci, Nanchang 330031, Jiangxi, Peoples R China
[2] Nankai Univ, Key Lab Adv Energy Mat Chem, Minist Educ, Tianjin 300071, Peoples R China
[3] Tsinghua Univ, Inst Nucl & New Energy Technol, Beijing 100084, Peoples R China
[4] Tsinghua Univ, Dept Chem, Key Lab Bioorgan Phosphorus Chem & Chem Biol, Minist Educ, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Aqueous zinc ion battery; Cathode; Optimization strategy; Energy storage mechanism; HIGH-PERFORMANCE CATHODE; TRIPHENYLAMINE-BASED POLYMER; PRUSSIAN BLUE ANALOGS; HIGH-CAPACITY; CYCLE LIFE; COPPER HEXACYANOFERRATE; STORAGE MECHANISM; ORGANIC CATHODE; ENERGY-STORAGE; NANOSHEETS;
D O I
10.1016/j.pmatsci.2024.101393
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Renewable energy has been extensively developed to curb the greenhouse effect and reduce carbon dioxide emissions. Nevertheless, their applications are greatly limited due to the intermittence and instability nature. Therefore, reasonably store and distribution of new energy have become a widespread concern. Among various energy storage technologies, lithium-ion battery technology has achieved great success, but the scarcity of lithium resources and the use of toxic and flammable organic electrolytes have limited its further development. Oppositely, aqueous zinc ion batteries (AZIBs) have advantages of safety, abundant resources, low cost, and the potential to store energy at the power plant level. However, the low capacity, poor cycle stability, and low voltage of cathode materials have become one of the limiting factors for the application of AZIBs. Herein, we systematically summarize and discuss the reported cathode materials, including manganese-based oxides, vanadium-based compounds, Prussian blue analogues, organics, MXenes, transition metal chalcogenides, layered double hydroxides, and others. Their developments, challenges, and feasible modification strategies are thoroughly analyzed. In addition, we also summarize and compare the proposed energy storage mechanisms of cathode materials. Finally, we propose potential research directions in the future for cathode materials, and provide essential guidance for the development of high-performance AZIBs.
引用
收藏
页数:53
相关论文
共 50 条
  • [1] Advances and Perspectives of Cathode Storage Chemistry in Aqueous Zinc-Ion Batteries
    Wang, Xiao
    Zhang, Zhengchunyu
    Xi, Baojuan
    Chen, Weihua
    Jia, Yuxi
    Feng, Jinkui
    Xiong, Shenglin
    ACS NANO, 2021, 15 (06) : 9244 - 9272
  • [2] Recent advances in cathode materials of rechargeable aqueous zinc-ion batteries
    Wang, L.
    Zheng, J.
    MATERIALS TODAY ADVANCES, 2020, 7
  • [3] Recent Advances and Prospects of Cathode Materials for Rechargeable Aqueous Zinc-Ion Batteries
    Chen, Lineng
    An, Qinyou
    Mai, Liqiang
    ADVANCED MATERIALS INTERFACES, 2019, 6 (17)
  • [4] Recent advances in cathode materials for aqueous zinc-ion batteries: Mechanisms, materials, challenges, and opportunities
    Sanna Gull
    Han-Yi Chen
    MRS Energy & Sustainability, 2022, 9 : 248 - 280
  • [5] Recent advances in cathode materials for aqueous zinc-ion batteries: Mechanisms, materials, challenges, and opportunities
    Gull, Sanna
    Chen, Han-Yi
    MRS ENERGY & SUSTAINABILITY, 2022, 9 (02) : 248 - 280
  • [6] The progress of cathode materials in aqueous zinc-ion batteries
    Zhou, Xinchi
    Jiang, Shan
    Zhu, Siao
    Xiang, Shuangfei
    Zhang, Zhen
    Xu, Xiangyu
    Xu, Yuanyuan
    Zhou, Jian
    Tan, Suchong
    Pan, Zhengdao
    Rao, Xingyou
    Wu, Yutong
    Wang, Zhoulu
    Liu, Xiang
    Zhang, Yi
    Zhou, Yunlei
    NANOTECHNOLOGY REVIEWS, 2023, 12 (01)
  • [7] Cerium oxide as cathode material for aqueous zinc-ion battery
    Zhang, Jingfang
    Jia, Weishang
    Yang, Hao
    He, Xinrui
    Ao, Shuqing
    Jin, Chongyang
    Chen, Pengyu
    Li, Hudong
    Yan, Xinxiu
    Ma, Zhaoxia
    Yang, Yao-Yue
    SOLID STATE IONICS, 2023, 391
  • [8] Recent Advances of Transition Metal Chalcogenides as Cathode Materials for Aqueous Zinc-Ion Batteries
    Liu, Ying
    Wu, Xiang
    NANOMATERIALS, 2022, 12 (19)
  • [9] Basics and Advances of Manganese-Based Cathode Materials for Aqueous Zinc-Ion Batteries
    Abdelmohsen, Ahmed Hashem
    El-khodary, Sherif A.
    Ismail, Nahla
    Song, Zhilong
    Lian, Jiabiao
    CHEMISTRY-A EUROPEAN JOURNAL, 2025, 31 (04)
  • [10] Activating Selenium Cathode Chemistry for Aqueous Zinc-Ion Batteries
    Cui, Fuhan
    Pan, Rui
    Su, Lin
    Zhu, Chongyang
    Lin, Hezhe
    Lian, Ruqian
    Fu, Ruining
    Zhang, Guoju
    Jiang, Zhenjing
    Hu, Xuechen
    Pan, Yuchen
    Hou, Shisheng
    Zhang, Fuchun
    Zhu, Kai
    Dong, Yanhao
    Xu, Feng
    ADVANCED MATERIALS, 2023, 35 (44)