Tailored Synthesis of Biogenic Gold and Silver Nanoparticles Using Camellia sinensis Extracts for Enhanced Catalytic Reduction of 4-Nitrophenol

被引:0
作者
avila-Aviles, Rodolfo D. [1 ,2 ,3 ]
Lopez-Tellez, Gustavo [1 ]
Vilchis-Nestor, Alfredo R. [1 ]
机构
[1] UAEM UNAM, Ctr Conjunto Invest Quim Sustentable CCIQS, Toluca 50200, Estado de Mexic, Mexico
[2] Soc Mexicana Epigenet & Med Regenerat A C SMEYMER, Transdisciplinary Res Drug Discovery, Mexico City, Mexico
[3] Ctr Invest & Estudios Avanzados Inst Politecn Nacl, Mexico City, Mexico
关键词
4-nitrophenol; biosynthesis; Camellia sinensis; gold nanoparticles; silver nanoparticles; GREEN SYNTHESIS; AQUEOUS-SOLUTION; P-NITROPHENOL; EFFICIENCY; NANOWIRES; PLATINUM; AGNO3;
D O I
10.1002/ppsc.202500011
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Noble metal nanoparticles, such as gold (AuNPs) and silver (AgNPs) nanoparticles, are valued for their optical, antimicrobial, and catalytic properties, which depend on their size and shape. This study synthesizes gold and silver nanoparticles using aqueous extracts of Camellia sinensis from four tea types (white, black, green, and red) and evaluates their catalytic efficiency in the reduction of 4-nitrophenol to 4-aminophenol. UV-vis spectroscopy confirmed nanoparticle formation, with surface plasmon resonance peaks at 530-534 nm for gold nanoparticles and 427-442 nm for silver nanoparticles, indicating mostly spherical morphologies. Transmission electron microscopy revealed that gold nanoparticles synthesized with white tea had an average diameter of 29.46 +/- 53.92 nm, while silver nanoparticles had an average diameter of 33.11 +/- 18.50 nm. The catalytic evaluation using sodium borohydride as a reducing agent showed a significant correlation between extract composition, nanoparticle size, and catalytic activity (p < 0.05). White tea favored the fastest nanoparticle formation (0.5 hours), while red tea showed the slowest synthesis. Pearson correlation analysis suggests that tea type influences nanoparticle size, morphology, and catalytic performance. This study highlights the potential of Camellia sinensis extracts for the eco-friendly synthesis of nanoparticles with tunable properties for catalytic applications.
引用
收藏
页数:13
相关论文
共 49 条
[1]   Green synthesis of stabilized spherical shaped gold nanoparticles using novel aqueous Elaeis guineensis (oil palm) leaves extract [J].
Ahmad, Tausif ;
Bustam, Mohamad Azmi ;
Irfan, Muhammad ;
Moniruzzaman, Muhammad ;
Asghar, Hafiz Muhammad Anwaar ;
Bhattacharjee, Sekhar .
JOURNAL OF MOLECULAR STRUCTURE, 2018, 1159 :167-173
[2]   Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract [J].
Ahmed, Shakeel ;
Saifullah ;
Ahmad, Mudasir ;
Swami, Babu Lal ;
Ikram, Saiqa .
JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES, 2016, 9 (01) :1-7
[3]   Biosynthesis of spherical and highly stable gold nanoparticles using Ferulago Angulata aqueous extract: dual role of extract [J].
Alizadeh, A. ;
Parsafar, S. ;
Khodaei, M. M. .
MATERIALS RESEARCH EXPRESS, 2017, 4 (03)
[4]  
Ausman, 2008, CHEM SOC REV, V41, P1710
[5]   Microbial biosensor based on whole cell of Pseudomonas sp for online measurement of p-nitrophenol [J].
Banik, R. M. ;
Mayank ;
Prakash, Rajiv ;
Upadhyay, S. N. .
SENSORS AND ACTUATORS B-CHEMICAL, 2008, 131 (01) :295-300
[6]   Microwave assisted catalytic oxidation of p-nitrophenol in aqueous solution using carbon-supported copper catalyst [J].
Bo, L. L. ;
Zhang, Y. B. ;
Quan, X. ;
Zhao, B. .
JOURNAL OF HAZARDOUS MATERIALS, 2008, 153 (03) :1201-1206
[7]   Gold nanoparticles - Synthesis by Sterculia acuminata extract and its catalytic efficiency in alleviating different organic dyes [J].
Bogireddy, Naveen Kumar Reddy ;
Anand, Kiran Kumar Hoskote ;
Mandal, Badal Kumar .
JOURNAL OF MOLECULAR LIQUIDS, 2015, 211 :868-875
[8]   Electrochemical treatment of 4-nitrophenol-containing aqueous wastes using boron-doped diamond anodes [J].
Cañizares, P ;
Sáez, C ;
Lobato, J ;
Rodrigo, MA .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2004, 43 (09) :1944-1951
[9]   Starch-supported gold nanoparticles and their use in 4-nitrophenol reduction [J].
Chairam, Sanoe ;
Konkamdee, Wipawee ;
Parakhun, Ramita .
JOURNAL OF SAUDI CHEMICAL SOCIETY, 2017, 21 (06) :656-663
[10]   Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology [J].
Daniel, MC ;
Astruc, D .
CHEMICAL REVIEWS, 2004, 104 (01) :293-346