A stable splitting for spaces of commuting elements in unitary groups

被引:0
作者
Adem, Alejandro [1 ]
Gomez, Jose Manuel [2 ]
Gritschacher, Simon [3 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC, Canada
[2] Univ Nacl Colombia Sede Medellin, Dept Matemat, Medellin, Colombia
[3] Univ Munich, Dept Math, Munich, Germany
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2025年 / 111卷 / 02期
关键词
N-TUPLES; COHOMOLOGY;
D O I
10.1112/jlms.70084
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove an analogue of Miller's stable splitting of the unitary group U(m)$U(m)$ for spaces of commuting elements in U(m)$U(m)$. After inverting m!$m!$, the space Hom(Zn,U(m))$\operatorname{Hom}(\mathbb {Z}<^>n,U(m))$ splits stably as a wedge of Thom-like spaces of bundles of commuting varieties over certain partial flag manifolds. Using Steenrod operations, we prove that our splitting does not hold integrally. Analogous decompositions for symplectic and orthogonal groups as well as homological results for the one-point compactification of the commuting variety in a Lie algebra are also provided.
引用
收藏
页数:36
相关论文
共 20 条
  • [1] Commuting elements and spaces of homomorphisms
    Adem, Alejandro
    Cohen, Frederick R.
    [J]. MATHEMATISCHE ANNALEN, 2007, 338 (03) : 587 - 626
  • [2] Stable splittings, spaces of representations and almost commuting elements in Lie groups
    Adem, Alejandro
    Cohen, Frederick R.
    Gomez, Jose Manuel
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2010, 149 : 455 - 490
  • [3] THE SPACE OF COMMUTING n-TUPLES IN SU(2)
    Baird, Thomas
    Jeffrey, Lisa C.
    Selick, Paul
    [J]. ILLINOIS JOURNAL OF MATHEMATICS, 2011, 55 (03) : 805 - 813
  • [4] Cohomology of the space of commuting n-tuples in a compact Lie group
    Baird, Thomas John
    [J]. ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2007, 7 : 737 - 754
  • [5] Bredon Glen E, 1972, Pure and Applied Mathematics
  • [6] SPACES OF COMMUTING ELEMENTS IN SU(2)
    Crabb, M. C.
    [J]. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2011, 54 : 67 - 75
  • [7] Crabb M. C., 1987, $Omega U(n)$, V1298, P35
  • [8] Stable summands of U(n)
    Crabb, MC
    Hubbuck, JR
    McCall, JAW
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1997, 127 : 963 - 973
  • [9] Fundamental groups of commuting elements in Lie groups
    Giese, E. Torres
    Sjerve, D.
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2008, 40 : 65 - 76
  • [10] Guerra L, 2025, T AM MATH SOC, V378, P3507, DOI 10.1090/tran/9358