Finite Ramsey theory through category theory

被引:0
|
作者
Solecki, Slawomir [1 ]
机构
[1] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
来源
ENSEIGNEMENT MATHEMATIQUE | 2025年 / 71卷 / 1-2期
关键词
Ramsey theory; category theory; frank functors;
D O I
10.4171/LEM/1070
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a new, category-theoretic point of view on finite Ramsey theory. Our aims are as follows: center dot to define the category-theoretic notions needed for the development of finite Ramsey theory; center dot to state, in terms of these notions, the general fundamental Ramsey results (of which various concrete Ramsey results are special cases); and center dot to give self-contained proofs within the category-theoretic framework of these general results. We also provide some concrete illustrations of the general method.
引用
收藏
页码:107 / 137
页数:31
相关论文
共 50 条
  • [31] Category theory and organic electronics
    Takahashi, Jun-ichi
    PHYSICS OPEN, 2023, 15
  • [32] Fundamentals of soft category theory
    Sardar, Sujit Kumar
    Gupta, Sugato
    Davvaz, Bijan
    BULLETIN OF COMPUTATIONAL APPLIED MATHEMATICS, 2018, 6 (01): : 59 - 82
  • [33] Category theory of symbolic dynamics
    Salo, Ville
    Torma, Ilkka
    THEORETICAL COMPUTER SCIENCE, 2015, 567 : 21 - 45
  • [34] Category Theory, Logic, and Philosophy
    Heller, Michal
    FILOZOFIA NAUKI, 2016, 24 (02): : 5 - +
  • [35] Formalizing Category Theory in Agda
    Hu, Jason Z. S.
    Carette, Jacques
    CPP '21: PROCEEDINGS OF THE 10TH ACM SIGPLAN INTERNATIONAL CONFERENCE ON CERTIFIED PROGRAMS AND PROOFS, 2021, : 327 - 342
  • [36] CATEGORY FREE CATEGORY THEORY AND ITS PHILOSOPHICAL IMPLICATIONS
    Heller, Michael
    LOGIC AND LOGICAL PHILOSOPHY, 2016, 25 (04) : 447 - 459
  • [37] Analyses of design processes based on category theory and channel theory
    Minamizono, K
    Katai, O
    Shiose, T
    Kawakami, H
    SICE 2003 ANNUAL CONFERENCE, VOLS 1-3, 2003, : 961 - 966
  • [38] A limiting result for the Ramsey theory of functional equations
    Arruda, Paulo Henrique
    Baglini, Lorenzo Luperi
    FUNDAMENTA MATHEMATICAE, 2024, 264 (01) : 55 - 68
  • [39] AN APPLICATION OF RAMSEY THEORY TO CODING FOR THE OPTICAL CHANNEL
    Kashyap, Navin
    Siegel, Paul H.
    Vardy, Alexander
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2005, 19 (04) : 921 - 937
  • [40] RAMSEY THEORY FOR HIGHLY CONNECTED MONOCHROMATIC SUBGRAPHS
    Bergfalk, J.
    Hrusak, M.
    Shelah, S.
    ACTA MATHEMATICA HUNGARICA, 2021, 163 (01) : 309 - 322