Dendritic cells in developing and adult zebrafish arise from different origins and display distinct flt3 dependencies

被引:0
作者
Lin, Guanzhen [1 ,2 ]
Wang, Youqi [1 ,2 ]
Pham, Thi Giang [1 ,2 ]
Wen, Zilong [1 ,3 ]
机构
[1] Southern Univ Sci & Technol, Sch Life Sci, Dept Immunol & Microbiol, Shenzhen 518055, Peoples R China
[2] Hong Kong Univ Sci & Technol, Div Life Sci, Clear Water Bay, Hong Kong 000000, Peoples R China
[3] Shenzhen Bay Lab, Shenzhen 518055, Peoples R China
来源
DEVELOPMENT | 2025年 / 152卷 / 04期
关键词
Zebrafish; Hematopoiesis; Dendritic cell; Flt3; T-CELLS; HEMATOPOIESIS; REVEALS; PROGENITORS; FLT3; MACROPHAGES; NEUTROPHILS; TOLERANCE; MICROGLIA; SYSTEM;
D O I
10.1242/dev.204410
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Dendritic cells (DCs) are key cellular components of the immune system and perform crucial functions in innate and acquired immunity. In mammals, it is generally believed that DCs originate exclusively from hematopoietic stem cells (HSCs). Using a temporal- spatial resolved fate-mapping system, here we show that, in zebrafish, DCs arise from two sources: dorsal aorta-born endothelium-derived hematopoietic progenitors (EHPs) and HSCs. The EHP-derived DCs emerge early, predominantly colonizing the developing thymus during larval stages and diminishing by juvenile stages. In contrast, HSC-derived DCs emerge later and can populate different tissues from late larval stages to adulthood. We further document that the EHP- and HSC-derived DCs display different dependencies on Fms-like tyrosine kinase 3 (Flt3), a pivotal receptor tyrosine kinase crucial for DC development in mammals. Our study reveals the presence of two distinct waves of DC development in zebrafish, each with unique origins and developmental controls.
引用
收藏
页数:9
相关论文
共 54 条
[11]  
He B.-L., Shi X., Man C. H., Ma A. C. H., Ekker S. C., Chow H. C. H., So C. W. E., Choi W. W. L., Zhang W., Zhang Y., Et al., Functions of flt3 in zebrafish hematopoiesis and its relevance to human acute myeloid leukemia, Blood, 123, pp. 2518-2529, (2014)
[12]  
Jacobsen S. E. W., Nerlov C., Haematopoiesis in the era of advanced single-cell technologies, Nat. Cell Biol, 21, pp. 2-8, (2019)
[13]  
Jagannathan-Bogdan M., Zon L. I., Hematopoiesis, Development, 140, pp. 2463-2467, (2013)
[14]  
Jin H., Xu J., Wen Z., Migratory path of definitive hematopoietic stem/ progenitor cells during zebrafish development, Blood, 109, pp. 5208-5214, (2007)
[15]  
Klein L., Kyewski B., Allen P. M., Hogquist K. A., Positive and negative selection of the T cell repertoire: what thymocytes see (and don’t see), Nat. Rev. Immunol, 14, pp. 377-391, (2014)
[16]  
Kobayashi M., Wei H., Yamanashi T., Azevedo Portilho N., Cornelius S., Valiente N., Nishida C., Cheng H., Latorre A., Zheng W. J., Et al., HSC-independent definitive hematopoiesis persists into adult life, Cell Rep, 42, (2023)
[17]  
Le Guyader D., Redd M. J., Colucci-Guyon E., Murayama E., Kissa K., Briolat V., Mordelet E., Zapata A., Shinomiya H., Herbomel P., Origins and unconventional behavior of neutrophils in developing zebrafish, Blood, 111, pp. 132-141, (2008)
[18]  
Lellahi S. M., Azeem W., Hua Y., Gabriel B., Paulsen Rye K., Reikvam H., Kalland K.-H., GM-CSF, Flt3–L and IL-4 affect viability and function of conventional dendritic cell types 1 and 2, Front. Immunol, 13, (2023)
[19]  
Li L., Yan B., Shi Y.-Q., Zhang W.-Q., Wen Z.-L., Live imaging reveals differing roles of macrophages and neutrophils during zebrafish tail fin regeneration, J. Biol. Chem, 287, pp. 25353-25360, (2012)
[20]  
McGrath K. E., Frame J. M., Fegan K. H., Bowen J. R., Conway S. J., Catherman S. C., Kingsley P. D., Koniski A. D., Palis J., Distinct sources of hematopoietic progenitors emerge before HSCs and provide functional blood cells in the Mammalian Embryo, Cell Rep, 11, pp. 1892-1904, (2015)