Dendritic cells in developing and adult zebrafish arise from different origins and display distinct flt3 dependencies

被引:0
作者
Lin, Guanzhen [1 ,2 ]
Wang, Youqi [1 ,2 ]
Pham, Thi Giang [1 ,2 ]
Wen, Zilong [1 ,3 ]
机构
[1] Southern Univ Sci & Technol, Sch Life Sci, Dept Immunol & Microbiol, Shenzhen 518055, Peoples R China
[2] Hong Kong Univ Sci & Technol, Div Life Sci, Clear Water Bay, Hong Kong 000000, Peoples R China
[3] Shenzhen Bay Lab, Shenzhen 518055, Peoples R China
来源
DEVELOPMENT | 2025年 / 152卷 / 04期
关键词
Zebrafish; Hematopoiesis; Dendritic cell; Flt3; T-CELLS; HEMATOPOIESIS; REVEALS; PROGENITORS; FLT3; MACROPHAGES; NEUTROPHILS; TOLERANCE; MICROGLIA; SYSTEM;
D O I
10.1242/dev.204410
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Dendritic cells (DCs) are key cellular components of the immune system and perform crucial functions in innate and acquired immunity. In mammals, it is generally believed that DCs originate exclusively from hematopoietic stem cells (HSCs). Using a temporal- spatial resolved fate-mapping system, here we show that, in zebrafish, DCs arise from two sources: dorsal aorta-born endothelium-derived hematopoietic progenitors (EHPs) and HSCs. The EHP-derived DCs emerge early, predominantly colonizing the developing thymus during larval stages and diminishing by juvenile stages. In contrast, HSC-derived DCs emerge later and can populate different tissues from late larval stages to adulthood. We further document that the EHP- and HSC-derived DCs display different dependencies on Fms-like tyrosine kinase 3 (Flt3), a pivotal receptor tyrosine kinase crucial for DC development in mammals. Our study reveals the presence of two distinct waves of DC development in zebrafish, each with unique origins and developmental controls.
引用
收藏
页数:9
相关论文
共 54 条
  • [1] Boiers C., Carrelha J., Lutteropp M., Luc S., Green J. C. A., Azzoni E., Woll P. S., Mead A. J., Hultquist A., Swiers G., Et al., Lymphomyeloid contribution of an immune-restricted progenitor emerging prior to definitive hematopoietic stem cells, Cell Stem Cell, 13, pp. 535-548, (2013)
  • [2] Cabeza-Cabrerizo M., Cardoso A., Minutti C. M., Pereira Da Costa M., Reis E Sousa C., Dendritic cells revisited, Annu. Rev. Immunol, 39, pp. 131-166, (2021)
  • [3] Ciau-Uitz A., Monteiro R., Kirmizitas A., Patient R., Developmental hematopoiesis: ontogeny, genetic programming and conservation, Exp. Hematol, 42, pp. 669-683, (2014)
  • [4] Dakic A., Shao Q., D'Amico A., O'Keeffe M., Chen W., Shortman K., Wu L., Development of the dendritic cell system during mouse ontogeny, J. Immunol, 172, pp. 1018-1027, (2004)
  • [5] Denans N., Tran N. T. T., Swall M. E., Diaz D. C., Blanck J., Piotrowski T., An anti-inflammatory activation sequence governs macrophage transcriptional dynamics during tissue injury in zebrafish, Nat. Commun, 13, (2022)
  • [6] Detrich H. W., Kieran M. W., Chan F. Y., Barone L. M., Yee K., Rundstadler J. A., Pratt S., Ransom D., Zon L. I., Intraembryonic hematopoietic cell migration during vertebrate development, Proc. Natl. Acad. Sci. USA, 92, pp. 10713-10717, (1995)
  • [7] Durai V., Bagadia P., Theisen D. J., Iwata A., Davidson J. T., Gargaro M., Fremont D. H., Murphy T. L., Murphy K. M., Altered compensatory cytokine signaling underlies the discrepancy between Flt3−/− and Flt3l−/− mice, J. Exp. Med, 215, pp. 1417-1435, (2018)
  • [8] Forsthuber T., Yip H. C., Lehmann P. V., Induction of TH1 and TH2 immunity in neonatal mice, Science, 271, pp. 1728-1730, (1996)
  • [9] Ginhoux F., Greter M., Leboeuf M., Nandi S., See P., Gokhan S., Mehler M. F., Conway S. J., Ng L. G., Stanley E. R., Et al., Fate mapping analysis reveals that adult microglia derive from primitive macrophages, Science, 330, pp. 841-845, (2010)
  • [10] Granucci F., Zanoni I., Pavelka N., Van Dommelen S. L. H., Andoniou C. E., Belardelli F., Degli Esposti M. A., Ricciardi-Castagnoli P., A contribution of mouse dendritic cell-derived IL-2 for NK cell activation, J. Exp. Med, 200, pp. 287-295, (2004)