Lithological Controls on Soil Aggregates and Minerals Regulate Microbial Carbon Use Efficiency and Necromass Stability

被引:16
作者
Hu, Peilei [1 ,2 ,3 ]
Zhang, Wei [1 ,2 ,3 ]
Nottingham, Andrew T. [4 ,5 ]
Xiao, Dan [1 ,2 ]
Kuzyakov, Yakov [6 ,7 ,8 ]
Xu, Lin [1 ,2 ,9 ]
Chen, Hongsong [1 ,2 ]
Xiao, Jun [1 ,2 ,3 ]
Duan, Pengpeng [1 ,2 ]
Tang, Tiangang [1 ,2 ]
Zhao, Jie [1 ,2 ,3 ]
Wang, Kelin [1 ,2 ]
机构
[1] Chinese Acad Sci, Key Lab Agroecol Proc Subtrop Reg, Inst Subtrop Agr, Changsha 410125, Peoples R China
[2] Chinese Acad Sci, Guangxi Key Lab Karst Ecol Proc & Serv, Huanjiang Agr Ecosyst Observat & Res Stn Guangxi, Huanjiang Observat & Res Stn Karst Ecosyst, Huanjiang 547100, Peoples R China
[3] Guangxi Ind Technol Res Inst Karst Rocky Desertifi, Nanning 530000, Peoples R China
[4] Univ Leeds, Sch Geog, Leeds LS2 9JT, England
[5] Smithsonian Trop Res Inst, Panama City 03092, Panama
[6] Univ Goettingen, Dept Soil Sci Temperate Ecosyst, Dept Agr Soil Sci, D-37077 Gottingen, Germany
[7] Peoples Friendship Univ Russia RUDN Univ, Moscow 117198, Russia
[8] Kazan Fed Univ, Inst Environm Sci, Kazan 420049, Russia
[9] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
aggregates; iron (hydr)oxides; lithology; microbial life strategies; microbial necromass; mineral protection; BIOMASS; STABILIZATION; PROTECTION;
D O I
10.1021/acs.est.4c07264
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Microbial carbon (C) use efficiency (CUE) drives soil C formation, while physical-chemical protection stabilizes subsequent microbial necromass, both shaped by soil aggregates and minerals. Soils inherit many properties from the parent material, yet the influence of lithology and associated soil geochemistry on microbial CUE and necromass stabilization remains unknow. Here, we quantified microbial CUE in well-aggregated bulk soils and crushed aggregates, as well as microbial necromass in bulk soils and the mineral-associated organic matter fraction, originating from carbonate-containing (karst) and carbonate-free (clastic rock, nonkarst) parent materials along a broad climatic gradient. We found that aggregate crushing significantly increased microbial CUE in both karst and nonkarst soils. Additionally, compared to nonkarst soils, calcium-rich karst soils increased macroaggregate stability and decreased the ratio of oligotrophic to copiotrophic microbial taxa, leading to a reduction in microbial CUE. Moreover, microbial CUE was negatively associated with iron (hydr)oxides in karst soils, attributed to the greater abundance of iron (hydr)oxides and higher soil pH. Despite the negative effects of soil aggregation and minerals on microbial CUE, particularly in karst soils, these soils concurrently showed greater microbial necromass stability through organo-mineral associations compared to nonkarst soils. Consequently, (i) bedrock lithology mediates the effects of aggregates and minerals on microbial CUE and necromass stability; and (ii) balancing minerals' dual roles in diminishing microbial CUE and enhancing microbial necromass stability is vital for optimizing soil C preservation.
引用
收藏
页码:21186 / 21199
页数:14
相关论文
共 70 条
[1]   Data Descriptor: TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015 [J].
Abatzoglou, John T. ;
Dobrowski, Solomon Z. ;
Parks, Sean A. ;
Hegewisch, Katherine C. .
SCIENTIFIC DATA, 2018, 5
[2]   Potential for large-scale CO2 removal via enhanced rock weathering with croplands [J].
Beerling, David J. ;
Kantzas, Euripides P. ;
Lomas, Mark R. ;
Wade, Peter ;
Eufrasio, Rafael M. ;
Renforth, Phil ;
Sarkar, Binoy ;
Andrews, M. Grace ;
James, Rachael H. ;
Pearce, Christopher R. ;
Mercure, Jean-Francois ;
Pollitt, Hector ;
Holden, Philip B. ;
Edwards, Neil R. ;
Khanna, Madhu ;
Koh, Lenny ;
Quegan, Shaun ;
Pidgeon, Nick F. ;
Janssens, Ivan A. ;
Hansen, James ;
Banwart, Steven A. .
NATURE, 2020, 583 (7815) :242-+
[3]   The role of soil carbon in natural climate solutions [J].
Bossio, D. A. ;
Cook-Patton, S. C. ;
Ellis, P. W. ;
Fargione, J. ;
Sanderman, J. ;
Smith, P. ;
Wood, S. ;
Zomer, R. J. ;
von Unger, M. ;
Emmer, I. M. ;
Griscom, B. W. .
NATURE SUSTAINABILITY, 2020, 3 (05) :391-398
[4]   Microbial respiratory thermal adaptation is regulated by r-/K-strategy dominance [J].
Chen, Hongyang ;
Jing, Qingfang ;
Liu, Xiang ;
Zhou, Xuhui ;
Fang, Changming ;
Li, Bo ;
Zhou, Shurong ;
Nie, Ming .
ECOLOGY LETTERS, 2022, 25 (11) :2489-2499
[5]   Soil carbon persistence governed by plant input and mineral protection at regional and global scales [J].
Chen, Leiyi ;
Fang, Kai ;
Wei, Bin ;
Qin, Shuqi ;
Feng, Xuehui ;
Hu, Tianyu ;
Ji, Chengjun ;
Yang, Yuanhe .
ECOLOGY LETTERS, 2021, 24 (05) :1018-1028
[6]   Contrasting pathways of carbon sequestration in paddy and upland soils [J].
Chen, Xiangbi ;
Hu, Yajun ;
Xia, Yinhang ;
Zheng, Shengmeng ;
Ma, Chong ;
Rui, Yichao ;
He, Hongbo ;
Huang, Daoyou ;
Zhang, Zhenhua ;
Ge, Tida ;
Wu, Jinshui ;
Guggenberger, Georg ;
Kuzyakov, Yakov ;
Su, Yirong .
GLOBAL CHANGE BIOLOGY, 2021, 27 (11) :2478-2490
[7]   Soil carbon storage informed by particulate and mineral-associated organic matter [J].
Cotrufo, M. Francesca ;
Ranalli, Maria Giovanna ;
Haddix, Michelle L. ;
Six, Johan ;
Lugato, Emanuele .
NATURE GEOSCIENCE, 2019, 12 (12) :989-+
[8]   Limiting Resources Define the Global Pattern of Soil Microbial Carbon Use Efficiency [J].
Cui, Yongxing ;
Hu, Junxi ;
Peng, Shushi ;
Delgado-Baquerizo, Manuel ;
Moorhead, Daryl L. ;
Sinsabaugh, Robert L. ;
Xu, Xiaofeng ;
Geyer, Kevin M. ;
Fang, Linchuan ;
Smith, Pete ;
Penuelas, Josep ;
Kuzyakov, Yakov ;
Chen, Ji .
ADVANCED SCIENCE, 2024, 11 (35)
[9]   A critical review of mineral-microbe interaction and co-evolution: mechanisms and applications [J].
Dong, Hailiang ;
Huang, Liuqin ;
Zhao, Linduo ;
Zeng, Qiang ;
Liu, Xiaolei ;
Sheng, Yizhi ;
Shi, Liang ;
Wu, Geng ;
Jiang, Hongchen ;
Li, Fangru ;
Zhang, Li ;
Guo, Dongyi ;
Li, Gaoyuan ;
Hou, Weiguo ;
Chen, Hongyu .
NATIONAL SCIENCE REVIEW, 2022, 9 (10)
[10]  
Dontsova K, 2020, GEOPHYS MONOGR SER, V251, P33