This study explores the relationship between bryophyte (mosses) diversity and environmental factors in the Veles region, North Macedonia, focusing on the spatial distribution of chemical elements in the moss and surface soil samples collected from the same locations. Eighteen moss samples were analyzed alongside surface soils. Advanced spectrometric techniques were used to identify potentially toxic elements (PTEs) and their links to anthropogenic and natural sources. While metal measurements are widely reported in the literature, the novelty of this study lies in its integrative approach, combining moss biodiversity analysis with a direct comparison of element concentrations in both moss and soil. The results show significant patterns of deposition of PTEs and highlight the long-term impact of industrial activities on biodiversity and air pollution. These findings provide valuable insights into conservation strategies and environmental management in the midst of ongoing ecological change. Five groups of elements were separated using factor analysis: G1 (Al, Cr, Cu, Fe, Li, Mg, Mn, Ni and V); G2 (Ba and Na); G3 (K, P and Mo), G4 (Pb and Zn), and G5 (Ag, As and Cd), of which two groups (G1 and G2) were found to be typical geochemical associations, while G4 and G5 are anthropogenic associations due to the emission of dust from contaminated soils and the slag heap of the Pb-Zn smelting plant. Group 3 represents a mixed geochemical and anthropogenic association. It was found that Pb, Zn, Cd, and As could indeed be detected in the moss in the study area, underlining its ability to detect pollutants in the air. A comparative analysis of moss and soil samples revealed significant differences in element concentrations, with most elements being more concentrated in soil. These results underline the role of moss as a bioindicator of atmospheric deposition, detecting pollution trends rather than direct soil contamination.