Machine learning for prediction of ventricular arrhythmia episodes from intracardiac electrograms of automatic implantable cardioverter-defibrillators

被引:1
|
作者
Cha, Yong-Mei [1 ]
Attia, Itzhak Zachi [1 ]
Metzger, Coby [2 ]
Lopez-Jimenez, Francisco [1 ]
Tan, Nicholas Y. [1 ]
Cruz, Jessica [1 ]
Upadhyay, Gaurav A. [3 ]
Mullane, Steven [4 ]
Harrell, Camden [4 ]
Kinar, Yaron
Sedelnikov, Ilya [2 ]
Lerman, Amir [1 ]
Friedman, Paul A. [1 ]
机构
[1] Mayo Clin, Dept Cardiovasc Med, 200 First St SW, Rochester, MN 55905 USA
[2] Medial EarlySign, Hod Hasharon, Israel
[3] Univ Chicago Med, Dept Cardiol, Chicago, IL USA
[4] Biotronik Inc, Lake Oswego, OR USA
关键词
Implantable cardioverter-defibrillator; Artificial intelligence; Machine learning; Ventricular tachycardia; Ventricular fi brillation; Sudden cardiac death; ANTIARRHYTHMIC-DRUG THERAPY; CARDIAC-ARREST; RISK;
D O I
10.1016/j.hrthm.2024.05.040
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
BACKGROUND Despite effectiveness of the implantable cardioverter-defibrillator (ICD) in saving patients with life-threatening ventricular arrhythmias (VAs), the temporal occurrence of VA after ICD implantation is unpredictable. OBJECTIVE The study aimed to apply machine learning (ML) to intracardiac electrograms (IEGMs) recorded by ICDs as a unique biomarker for predicting impending VAs. METHODS The study included 13,516 patients who received Biotronik ICDs and enrolled in the CERTITUDE registry between January 1, 2010, and December 31, 2020. Database extraction included IEGMs from standard quarterly transmissions and VA event episodes. The processed IEGM data were pulled from device transmissions stored in a centralized Home Monitoring Service Center and reformatted into an analyzable format. Long-range (baseline or fi rst scheduled remote recording), mid-range (scheduled remote recording every 90 days), or short-range predictions (IEGM within 5 seconds before the VA onset) were used to determine whether ML-processed IEGMs predicted impending VA events. Convolutional neural network classifiers using ResNet architecture were employed. RESULTS Of 13,516 patients (male, 72%; age, 67.5 6 11.9 years), 301,647 IEGM recordings were collected; 27,845 episodes of sustained ventricular tachycardia or ventricular fi brillation were observed in 4467 patients (33.0%). Neural networks based on convolutional neural networks using ResNet-like architectures on far-field IEGMs yielded an area under the curve of 0.83 with a 95% confidence interval of 0.79-0.87 in the short term, whereas the long-range and mid-range analyses had minimal predictive value for VA events. CONCLUSION In this study, applying ML to ICD-acquired IEGMs predicted impending ventricular tachycardia or ventricular fi brillation events seconds before they occurred, whereas midterm to long-term predictions were not successful. This could have important implications for future device therapies.
引用
收藏
页码:2295 / 2302
页数:8
相关论文
共 50 条
  • [31] Mortality Risk Increases With Clustered Ventricular Arrhythmias in Patients With Implantable Cardioverter-Defibrillators
    Elsokkari, Ihab
    Parkash, Ratika
    Tang, Anthony
    Wells, George
    Doucette, Steve
    Yetisir, Elizabeth
    Gardner, Martin
    Healey, Jeffrey S.
    Thibault, Bernard
    Sterns, Laurence
    Birnie, David
    Nery, Pablo
    Sivakumaran, Soori
    Essebag, Vidal
    Dorian, Paul
    Sapp, John
    JACC-CLINICAL ELECTROPHYSIOLOGY, 2020, 6 (03) : 327 - 337
  • [32] Causes of ventricular oversensing in implantable cardioverter-defibrillators: Implications for diagnosis of lead fracture
    Gunderson, Bruce D.
    Swerdlow, Charles D.
    Wilcox, Jay M.
    Hayman, Jean E.
    Ousdigian, Kevin T.
    Ellenbogen, Kenneth A.
    HEART RHYTHM, 2010, 7 (05) : 626 - 633
  • [33] An international multicenter cohort study on implantable cardioverter-defibrillators for the treatment of symptomatic children with catecholaminergic polymorphic ventricular tachycardia
    Lamba, Avani
    Roston, Thomas M.
    Peltenburg, Puck J.
    Kallas, Dania
    Franciosi, Sonia
    Lieve, Krystien V. V.
    Kannankeril, Prince J.
    Horie, Minoru
    Ohno, Seiko
    Brugada, Ramon
    Aiba, Takeshi
    Fischbach, Peter
    Knight, Linda
    Till, Jan
    Kwok, Sit-Yee
    Probst, Vincent
    Backhoff, David
    Lapage, Martin J.
    Batra, Anjan S.
    Drago, Fabrizio
    Haugaa, Kristina
    Krahn, Andrew D.
    Robyns, Tomas
    Swan, Heikki
    Tavacova, Terezia
    van der Werf, Christian
    Atallah, Joseph
    Borggrefe, Martin
    Rudic, Boris
    Sarquella-Brugada, Georgia
    Chorin, Ehud
    Hill, Allison
    Kammeraad, Janneke
    Kamp, Anna
    Law, Ian
    Perry, James
    Roberts, Jason D.
    Tisma-Dupanovic, Svjetlana
    Semsarian, Christopher
    Skinner, Jonathan R.
    Tfelt-Hansen, Jacob
    Denjoy, Isabelle
    Leenhardt, Antoine
    Schwartz, Peter J.
    Ackerman, Michael J.
    Blom, Nico A.
    Wilde, Arthur A. M.
    Sanatani, Shubhayan
    HEART RHYTHM, 2024, 21 (10) : 1767 - 1776
  • [34] Arrhythmia Discrimination in Implantable Cardioverter Defibrillators Using Support Vector Machines Applied to a New Representation of Electrograms
    Milpied, Paola
    Dubois, Remi
    Roussel, Pierre
    Henry, Christine
    Dreyfus, Gerard
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2011, 58 (06) : 1797 - 1803
  • [35] EFFECTIVENESS OF NONINVASIVE PROGRAMMED STIMULATION FOR INITIATING VENTRICULAR TACHYARRHYTHMIAS IN PATIENTS WITH 3RD-GENERATION IMPLANTABLE CARDIOVERTER-DEFIBRILLATORS
    KLEIMAN, RB
    CALLANS, DJ
    HOOK, BG
    MARCHLINSKI, FE
    PACE-PACING AND CLINICAL ELECTROPHYSIOLOGY, 1994, 17 (09): : 1462 - 1468
  • [36] Predictors of mortality and heart transplantation in patients with Chagas' cardiomyopathy and ventricular tachycardia treated with implantable cardioverter-defibrillators
    Gali, Wagner L.
    Sarabanda, Alvaro V.
    Baggio, Jose M., Jr.
    Silva, Eduardo F.
    Gomes, Gustavo G.
    Junqueira, Luiz F., Jr.
    EUROPACE, 2019, 21 (07): : 1070 - 1078
  • [37] The Role of Implantable Cardioverter-Defibrillators in Patients With Continuous Flow Left Ventricular Assist Devices
    Enriquez, Alan D.
    Calenda, Brandon
    Miller, Marc A.
    Anyanwu, Anelechi C.
    Pinney, Sean P.
    CIRCULATION-ARRHYTHMIA AND ELECTROPHYSIOLOGY, 2013, 6 (04): : 668 - 674
  • [38] Implantable cardioverter-defibrillators in previously undiagnosed patients with catecholaminergic polymorphic ventricular tachycardia resuscitated from sudden cardiac arrest
    van der Werf, Christian
    Lieve, Krystien V.
    Bos, J. Martijn
    Lane, Conor M.
    Denjoy, Isabelle
    Roses-Noguer, Ferran
    Aiba, Takeshi
    Wada, Yuko
    Ingles, Jodie
    Leren, Ida S.
    Rudic, Boris
    Schwartz, Peter J.
    Maltret, Alice
    Sacher, Frederic
    Skinner, Jonathan R.
    Krahn, Andrew D.
    Roston, Thomas M.
    Tfelt-Hansen, Jacob
    Swan, Heikki
    Robyns, Tomas
    Ohno, Seiko
    Roberts, Jason D.
    van den Berg, Maarten P.
    Kammeraad, Janneke A.
    Probst, Vincent
    Kannankeril, Prince J.
    Blom, Nico A.
    Behr, Elijah R.
    Borggrefe, Martin
    Haugaa, Kristina H.
    Semsarian, Christopher
    Horie, Minoru
    Shimizu, Wataru
    Till, Janice A.
    Leenhardt, Antoine
    Ackerman, Michael J.
    Wilde, Arthur A.
    EUROPEAN HEART JOURNAL, 2019, 40 (35) : 2953 - 2961
  • [39] Predictors of Mortality in Patients with Chagas' Cardiomyopathy and Ventricular Tachycardia Not Treated with Implantable Cardioverter-Defibrillators
    Lima Sarabanda, Alvaro Valentim
    Marin-Neto, Jose Antonio
    PACE-PACING AND CLINICAL ELECTROPHYSIOLOGY, 2011, 34 (01): : 54 - 62
  • [40] Emerging electromagnetic interferences between implantable cardioverter-defibrillators and left ventricular assist devices
    Yalcin, Yunus C.
    Kooij, Claudette
    Theuns, Dominic A. M. J.
    Constantinescu, Alina A.
    Brugts, Jasper J.
    Manintveld, Olivier C.
    Yap, Sing-Chien
    Szili-Torok, Tamas
    Bogers, Ad J. J. C.
    Caliskan, Kadir
    EUROPACE, 2020, 22 (04): : 584 - 587