Artificial intelligence in healthcare (Review)

被引:1
作者
Alhejaily, Abdul-Mohsen G. [1 ]
机构
[1] King Fahad Med City, Acad Operat Adm, Riyadh Second Hlth Cluster, Riyadh 11525, Saudi Arabia
关键词
artificial intelligence; machine learning; deep learning; healthcare; clinical decision support; digital transformation; digital pathology;
D O I
10.3892/br.2024.1889
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
The potential of artificial intelligence (AI) to significantly transform numerous aspects of contemporary civilization is substantial. Advancements in research show an increasing interest in creating AI solutions in the healthcare sector. This interest is driven by the broad spectrum and extensive nature of easily accessible patient data-including medical imaging, digitized data collection, and electronic health records - and by the ability to analyze and interpret complex data, facilitating more accurate and timely diagnoses. This review's goal is to provide a comprehensive overview of the advancements achieved by AI in healthcare, to elucidate the present state of AI in enhancing the healthcare system and improving the quality and efficiency of healthcare decision making, and to discuss selected medical applications of AI. Furthermore, the barriers and constraints that may impede the use of AI in healthcare are outlined, and the potential future directions of AI-augmented healthcare systems are discussed.
引用
收藏
页数:8
相关论文
共 31 条
[1]   Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices [J].
Abramoff, Michael D. ;
Lavin, Philip T. ;
Birch, Michele ;
Shah, Nilay ;
Folk, James C. .
NPJ DIGITAL MEDICINE, 2018, 1
[2]   Predicting Breast Cancer by Applying Deep Learning to Linked Health Records and Mammograms [J].
Akselrod-Ballin, Ayelet ;
Chorev, Michal ;
Shoshan, Yoel ;
Spiro, Adam ;
Hazan, Alon ;
Melamed, Roie ;
Barkan, Ella ;
Herzel, Esma ;
Naor, Shaked ;
Karavani, Ehud ;
Koren, Gideon ;
Goldscbmidt, Yaara ;
Shalev, Varda ;
Rosen-Zvi, Michal ;
Guindy, Michal .
RADIOLOGY, 2019, 292 (02) :331-342
[3]   Revolutionizing healthcare: the role of artificial intelligence in clinical practice [J].
Alowais, Shuroug A. ;
Alghamdi, Sahar S. ;
Alsuhebany, Nada ;
Alqahtani, Tariq ;
Alshaya, Abdulrahman I. ;
Almohareb, Sumaya N. ;
Aldairem, Atheer ;
Alrashed, Mohammed ;
Bin Saleh, Khalid ;
Badreldin, Hisham A. ;
Al Yami, Majed S. ;
Al Harbi, Shmeylan ;
Albekairy, Abdulkareem M. .
BMC MEDICAL EDUCATION, 2023, 23 (01)
[4]   The promise of artificial intelligence: a review of the opportunities and challenges of artificial intelligence in healthcare [J].
Aung, Yuri Y. M. ;
Wong, David C. S. ;
Ting, Daniel S. W. .
BRITISH MEDICAL BULLETIN, 2021, 139 (01) :4-15
[5]   Clinical-grade computational pathology using weakly supervised deep learning on whole slide images [J].
Campanella, Gabriele ;
Hanna, Matthew G. ;
Geneslaw, Luke ;
Miraflor, Allen ;
Silva, Vitor Werneck Krauss ;
Busam, Klaus J. ;
Brogi, Edi ;
Reuter, Victor E. ;
Klimstra, David S. ;
Fuchs, Thomas J. .
NATURE MEDICINE, 2019, 25 (08) :1301-+
[6]   Prediction of benign and malignant breast cancer using data mining techniques [J].
Chaurasia, Vikas ;
Pal, Saurabh ;
Tiwari, B. B. .
JOURNAL OF ALGORITHMS & COMPUTATIONAL TECHNOLOGY, 2018, 12 (02) :119-126
[7]  
Choi Kup-Sze, 2020, Hu Li Za Zhi, V67, P12, DOI 10.6224/JN.202010_67(5).03
[8]  
Conn J., 2013, Computing better healthcare
[9]  
Davenport Thomas, 2019, Future Healthc J, V6, P94, DOI [10.2139/ssrn.3525037, 10.7861/futurehosp.6-2-94, 10.7861/futurehosp.6-2-94]
[10]   A guide to deep learning in healthcare [J].
Esteva, Andre ;
Robicquet, Alexandre ;
Ramsundar, Bharath ;
Kuleshov, Volodymyr ;
DePristo, Mark ;
Chou, Katherine ;
Cui, Claire ;
Corrado, Greg ;
Thrun, Sebastian ;
Dean, Jeff .
NATURE MEDICINE, 2019, 25 (01) :24-29