Gluing dynamics: ε-precision in solving a non-Archimedean inverse problem

被引:0
作者
Coello, Victor Nopal [1 ]
Perez-Buendia, J. Rogelio [2 ]
机构
[1] Ctr Invest Matemat Un Merida, Merida, Yucatan, Mexico
[2] CIMAT, SECHTI, Merida, Mexico
来源
BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA | 2025年 / 31卷 / 02期
关键词
Dynamical systems; Non-Archimedean dynamics; Local dynamics; Inverse problems;
D O I
10.1007/s40590-025-00730-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This research proposes a new method for approximating the solution of the inverse problem of finding a rational function that generates known local dynamics within distinct, disjoint closed balls in non-Archimedean fields. Although our approach is not directly influenced by Runge's theorem for approximating analytic maps in complex settings, it shares similarities by adapting these ideas to the non-Archimedean context. We aim to connect local dynamic behaviors, similar to dynamic surgery, without using quasiconformal but rational mappings. Our main theorem and corollaries present an algorithmic technique to construct a rational function, denoted as F epsilon, that synthesizes specified local dynamics with an epsilon-precision parameter globally.
引用
收藏
页数:16
相关论文
共 9 条
[1]   Components and periodic points in non-archimedean dynamics [J].
Benedetto, RL .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2002, 84 :231-256
[2]  
Benedetto RL., 2019, Dynamics in one non-archimedean variable, V198
[3]  
Gamelin T., 2003, Complex Analysis
[4]  
Hsia LC, 1996, COMPOS MATH, V100, P277
[5]   PUISEUX SERIES DYNAMICS OF QUADRATIC RATIONAL MAPS [J].
Kiwi, Jan .
ISRAEL JOURNAL OF MATHEMATICS, 2014, 201 (02) :631-700
[6]   NON-ARCHIMEDEAN INDIFFERENT COMPONENTS OF RATIONAL FUNCTIONS THAT ARE NOT DISKS [J].
Nopal-Coello, Victor .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 376 (01) :419-451
[7]  
Rivera-Letelier J, 2003, ASTERISQUE, P147
[8]  
SHISHIKURA M, 1987, ANN SCI ECOLE NORM S, V20, P1
[9]  
Silverman JH., 2007, The arithmetic of dynamical systems, V241