Fast and sensitive virus detection using a plasmonic sensor that integrates electrokinetically assisted sampling and surface-enhanced Raman scattering

被引:2
作者
Azimi, Shamim [1 ]
Moridsadat, Maryam [2 ]
Shastri, Bhavin [2 ]
Banfield, Bruce W. [3 ]
Escobedo, Carlos [1 ]
Docoslis, Aristides [1 ]
机构
[1] Queens Univ, Dept Chem Engn, QuSENS Lab, Kingston, ON K7L 3N6, Canada
[2] Queens Univ, Ctr Nanophoton Engn Phys & Astron, Kingston, ON K7L 3N6, Canada
[3] Queens Univ, Dept Biomed & Mol Sci, Kingston, ON K7L 3N6, Canada
基金
加拿大自然科学与工程研究理事会; 加拿大创新基金会;
关键词
Surface-enhanced Raman scattering (SERS); Dielectrophoresis; Silver nanoparticle; label-free; virus detection; SERS DETECTION; M13; BACTERIOPHAGE; SILVER;
D O I
10.1016/j.snr.2024.100273
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
We present a novel plasmonic biosensing method for on-chip detection on viral particles featuring a micro- electrode platform that integrates accelerated sampling of virus with surface-enhanced Raman scattering (SERS). We show experimentally that our approach can produce spectacular results owing to the unique incorporation of two key features: (1) Concentration amplification of virus on the SERS-active substrate; (2) Local plasmonic activity enhancement due to the targeted superimposition of silver nanoparticles on the captured virus sites. When tested for the detection of the M13 bacteriophage our "sandwich" assay yielded excellent reproducibility (signal variation <6%) and a very low limit of detection (1.13 x 102 pfu/ml). Compared with the performance of our standard SERS substrates, SERS signals stronger by at least one order of magnitude are typically achieved. In addition to experimental results, our work also includes finite element (COMSOL Multiphysics) and finite- difference time-domain (FDTD) simulations that provide insights into the mechanisms of concentration amplification and plasmonic activity enhancement, respectively.
引用
收藏
页数:11
相关论文
共 44 条
[1]   Real-time virus trapping and fluorescent imaging in microfluidic devices [J].
Akin, D ;
Li, HB ;
Bashir, R .
NANO LETTERS, 2004, 4 (02) :257-259
[2]  
Becerril-Castro IB, 2022, ANAL SENS, V2, DOI 10.1002/anse.202200005
[3]  
Cetin B., 2011, Simulation of electrokinetic manipulation of particle motion inside microchannels, DOI 10.131402.1.2362.6882
[4]   Chemical modulation of M13 bacteriophage and its functional opportunities for nanomedicine [J].
Chung, Woo-Jae ;
Lee, Doe-Young ;
Yoo, So Young .
INTERNATIONAL JOURNAL OF NANOMEDICINE, 2014, 9 :5825-5836
[5]   3D silver metallized nanotrenches fabricated by nanoimprint lithography as flexible SERS detection platform [J].
Colnita, Alia ;
Marconi, Daniel ;
Dina, Nicoleta Elena ;
Brezestean, Ioana ;
Bogdan, Diana ;
Turcu, Ioan .
SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2022, 276
[6]   Rapid identification and quantification of illicit drugs on nanodendritic surface-enhanced Raman scattering substrates [J].
Dies, Hannah ;
Raveendran, Joshua ;
Escobedo, Carlos ;
Docoslis, Aristides .
SENSORS AND ACTUATORS B-CHEMICAL, 2018, 257 :382-388
[7]   In situ assembly of active surface-enhanced Raman scattering substrates via electric field-guided growth of dendritic nanoparticle structures [J].
Dies, Hannah ;
Raveendran, Joshua ;
Escobedo, Carlos ;
Docoslis, Aristides .
NANOSCALE, 2017, 9 (23) :7847-7857
[8]   Using nonuniform electric fields to accelerate the transport of viruses to surfaces from media of physiological ionic strength [J].
Docoslis, Aristides ;
Espinoza, Luis A. Tercero ;
Zhang, Bingbing ;
Cheng, Li-Lin ;
Israel, Barbara A. ;
Alexandridis, Paschalis ;
Abbott, Nicholas L. .
LANGMUIR, 2007, 23 (07) :3840-3848
[9]   Non-labeled selective virus detection with novel SERS-active porous silver nanofilms fabricated by Electron Beam Physical Vapor Deposition [J].
Durmanov, Nikolay N. ;
Guliev, Rustam R. ;
Eremenko, Arkady V. ;
Boginskaya, Irina A. ;
Ryzhikov, Ilya A. ;
Trifonova, Ekaterina A. ;
Putlyaev, Egor V. ;
Mukhin, Aleksei N. ;
Kalnov, Sergey L. ;
Balandina, Marina V. ;
Tkachuk, Artem P. ;
Gushchin, Vladimir A. ;
Sarychev, Andrey K. ;
Lagarkov, Andrey N. ;
Rodionov, Ilya A. ;
Gabidullin, Aidar R. ;
Kurochkin, Ilya N. .
SENSORS AND ACTUATORS B-CHEMICAL, 2018, 257 :37-47
[10]   Theory of the low frequency mechanical modes and Raman spectra of the M13 bacteriophage capsid with atomic detail [J].
Dykeman, Eric C. ;
Sankey, Otto F. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2009, 21 (03)