Quantum-Enhanced Support Vector Machine for Large-Scale Multi-class Stellar Classification

被引:3
作者
Chen, Kuan-Cheng [1 ,2 ]
Xu, Xiaotian [1 ,2 ]
Makhanov, Henry [3 ]
Chung, Hui-Hsuan [4 ]
Liu, Chen-Yu [5 ]
机构
[1] Imperial Coll London, Ctr Quantum Engn Sci & Technol QuEST, London SW7 2BX, England
[2] Imperial Coll London, Dept Mat, London SW7 2BX, England
[3] Univ Texas Austin, Dept Comp Sci, Austin, TX 78712 USA
[4] Max Planck Inst Radio Astron, Hugel 69, D-53121 Bonn, Germany
[5] Natl Taiwan Univ, Grad Inst Appl Phys, Taipei 10663, Taiwan
来源
ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT X, ICIC 2024 | 2024年 / 14871卷
关键词
Quantum Machine Learning; Quantum-enhanced SVM; Quantum Kernel Method; Stellar Classification; cuQuantum SDK;
D O I
10.1007/978-981-97-5609-4_12
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this study, we introduce an innovative Quantum-enhanced Support Vector Machine (QSVM) approach for stellar classification problems. The QSVM algorithm in our work shows better performance than traditional methods such as K-Nearest Neighbors and Logistic Regression, particularly in handling complex binary and multi-class scenarios within the Harvard stellar classification system. The integration of quantum principles notably enhances classification accuracy, while GPU acceleration using the cuQuantum SDK ensures computational efficiency and scalability for large datasets in quantum simulators. This synergy not only accelerates the processing but also improves the accuracy of classifying diverse stellar types, setting a new benchmark in astronomical data analysis. Our findings underscore the transformative potential of quantum machine learning in astronomical research, marking a significant leap forward in both precision and processing speed for stellar classification. This advancement has broader implications for astrophysical and related scientific fields.
引用
收藏
页码:155 / 168
页数:14
相关论文
共 41 条
[1]  
Abdiansah A, 2015, International Journal of Computer Applications, V128, P28, DOI [10.5120/ijca2015906480, 10.5120/ijca2015906480]
[2]  
Bailer-Jones C.A.L., 2018, Astron. Astrophys., V618, pA93
[3]  
Bailer-Jones C.A.L., 2002, Astron. Astrophys., V385, P95
[4]  
Bayraktar H, 2023, Arxiv, DOI arXiv:2308.01999
[5]   Quantum machine learning [J].
Biamonte, Jacob ;
Wittek, Peter ;
Pancotti, Nicola ;
Rebentrost, Patrick ;
Wiebe, Nathan ;
Lloyd, Seth .
NATURE, 2017, 549 (7671) :195-202
[6]   An investigation on support vector clustering for big data in quantum paradigm [J].
Bishwas, Arit Kumar ;
Mani, Ashish ;
Palade, Vasile .
QUANTUM INFORMATION PROCESSING, 2020, 19 (04)
[7]  
Boser B. E., 1992, Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory, P144, DOI 10.1145/130385.130401
[8]  
Cantu-Paz E., 2004, Proceedings of the ACM SIGKDD Internations Conference on Knowledge Discover and Data Mining, P788
[9]  
Chen Kuan-Cheng, 2023, 2023 IEEE International Conference on Quantum Computing and Engineering (QCE), P207, DOI 10.1109/QCE57702.2023.10214
[10]   Quantum convolutional neural networks for high energy physics data analysis [J].
Chen, Samuel Yen-Chi ;
Wei, Tzu-Chieh ;
Zhang, Chao ;
Yu, Haiwang ;
Yoo, Shinjae .
PHYSICAL REVIEW RESEARCH, 2022, 4 (01)