A systematic review on machine learning approaches in cerebral palsy research

被引:0
作者
Nahar, Anjuman [1 ]
Paul, Sudip [1 ]
Saikia, Manob Jyoti [2 ,3 ]
机构
[1] North Eastern Hill Univ, Dept Biomed Engn, Shillong, Meghalaya, India
[2] Univ Memphis, Elect & Comp Engn Dept, Memphis, TN 38152 USA
[3] Univ Memphis, Biomed Sensors & Syst Lab, Memphis, TN 38152 USA
来源
PEERJ | 2024年 / 12卷
关键词
Cerebral palsy; Unilateral; Bimanual therapy; mCIMT; Machine learning; RISK-FACTORS; CLASSIFICATION; PREDICTION;
D O I
10.7717/peerj.18270
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: This review aims to explore advances in the fi eld of cerebral palsy (CP) focusing on machine learning (ML) models. The objectives of this study is to analyze the advances in the application of ML models in the fi eld of CP and to compare the performance of different ML algorithms in terms of their effectiveness in CP identification, classifying CP into its subtypes, prediction of abnormalities in CP, and its management. These objectives guide the review in examining how ML techniques are applied to CP and their potential impact on improving outcomes in CP research and treatment. Methodology: A total of 20 studies were identified on ML for CP from 2013 to 2023. Search Engines used during the review included electronic databases like PubMed for accessing biomedical and life sciences, IEEE Xplore for technical literature in computer, Google Scholar for a broad range of academic publications, Scopus and Web of Science for multidisciplinary high impact journals. Inclusion criteria included articles containing keywords such as cerebral palsy, machine learning approaches, outcome response, identification, classification, diagnosis, and treatment prediction. Studies were included if they reported the application of ML techniques for CP patients. Peer reviewed articles from 2013 to 2023 were only included for the review. We selected full-text articles, clinical trials, randomized control trial, systematic reviews, narrative reviews, and meta-analyses published in English. Exclusion criteria for the review included studies not directly related to CP. Editorials, opinion pieces, and non-peer-reviewed articles were also excluded. To ensure the validity and reliability of the fi ndings in this review, we thoroughly examined the study designs, focusing on the appropriateness of their methodologies and sample sizes. To synthesize and present the results, data were extracted and organized into tables for easy comparison. The results were presented through a combination of text, tables, and fi gures, with key fi ndings emphasized in summary tables and relevant graphs. Results: Random forest (RF) is mainly used for classifying movements and deformities due to CP. Support vector machine (SVM), decision tree (DT), RF, and K-nearest neighbors (KNN) show 100% accuracy in exercise evaluation. RF and DT show 94% accuracy in the classification of gait patterns, multilayer perceptron (MLP) shows 84% accuracy in the classification of CP children, Bayesian causal forests (BCF) have 74% accuracy in predicting the average treatment effect on various orthopedic and neurological conditions. Neural networks are 94.17% accurate in diagnosing CP using eye images. However, the studies varied significantly in their design, sample size, and quality of data, which limits the generalizability of the fi ndings. Conclusion: Clinical data are primarily used in ML models in the CP fi eld, accounting for almost 47%. With the rise in popularity of machine learning techniques, there has been a rise in interest in developing automated and data-driven approaches to explore the use of ML in CP.
引用
收藏
页数:21
相关论文
共 29 条
  • [1] Afifi J, Doctoral dissertation
  • [2] Al-Sowi Abrar M., 2023, Informatics in Medicine Unlocked, DOI 10.1016/j.imu.2023.101197
  • [3] Alnuaimi AF, 2024, BIOWEB C EDP SCI
  • [4] Machine learning for understanding and predicting neurodevelopmental outcomes in premature infants: a systematic review
    Baker, Stephanie
    Kandasamy, Yogavijayan
    [J]. PEDIATRIC RESEARCH, 2023, 93 (02) : 293 - 299
  • [5] An introduction to machine learning for classification and prediction
    Black, Jason E.
    Kueper, Jacqueline K.
    Williamson, Tyler S.
    [J]. FAMILY PRACTICE, 2022, : 200 - 204
  • [6] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [7] de Oliveira LB, Master's thesis
  • [8] Fan H, 2018, LANCET, V392, P33
  • [9] Current thinking in the health care management of children with cerebral palsy
    Graham, David
    Paget, Simon P.
    Wimalasundera, Neil
    [J]. MEDICAL JOURNAL OF AUSTRALIA, 2019, 210 (03) : 129 - 135
  • [10] Anatomic Localization of Dyskinesia in Children with "Profound" Perinatal Hypoxic-Ischemic Injury
    Griffiths, P. D.
    Radon, M. R.
    Crossman, A. R.
    Zurakowski, D.
    Connolly, D. J.
    [J]. AMERICAN JOURNAL OF NEURORADIOLOGY, 2010, 31 (03) : 436 - 441