Exploiting Machine Learning And Gene Expression Analysis in Amyotrophic Lateral Sclerosis Diagnosis

被引:0
|
作者
Hai-Long Nguyen [1 ]
Duc-Long Vu [1 ]
Hai-Chau Le [1 ]
机构
[1] Posts & Telecommun Inst Technol, Data & Intelligent Syst Lab, Hanoi, Vietnam
来源
2024 IEEE TENTH INTERNATIONAL CONFERENCE ON COMMUNICATIONS AND ELECTRONICS, ICCE 2024 | 2024年
关键词
Machine Learning; Gene expression; Gene Selection; Sequential Forward Feature Selection; Amyotrophic Lateral Sclerosis;
D O I
10.1109/ICCE62051.2024.10634725
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Despite many research efforts, the biological insight related to Amyotrophic Lateral Sclerosis (ALS), a rare disease resulting in the loss of motor neurons and causing mortality, remains elusive and leads to challenges to the diagnosis of the disease. Fortunately, gene expression data has recently appeared as a potential approach for the functionality analysis of genes related to orphan diseases and for providing more accurate diagnosis outcomes. Moreover, with the explosion of machine learning (ML), implementing ML in analyzing biomedical data has become a promising direction with a notable effect on our lives. Leveraging these advantages, in this paper, we investigate to shed light on the effects of gene markers on ALS diagnosis and propose a novel gene combination that is effective in ALS diagnosis. We retrieve the datasets and perform the cleaning and pre-processing methods to obtain robust data for analysis. Then, the Max-Min Parents and Children (MMPC) and Sequential Forward Feature Selection (SFFS) algorithms are applied to achieve the optimal gene subsets that are effective for the final intelligent diagnosis model. Notably, the coefficient of the Ridge Classifier is utilized as the crucial score for determining the gene importance ranking table based on the selected gene signatures. All the possible gene combinations are evaluated and optimized in a set of robust machine learning algorithms. Consequently, a set of 20 genes identified through the Support Vector Machine (SVM) algorithm is selected as the optimal for the ALS diagnosis with an accuracy of 88.30% and an AUC score of 91.11%, which is dominant in comparison with notable traditional methods under the same datasets.
引用
收藏
页码:363 / 368
页数:6
相关论文
共 50 条
  • [31] Amyotrophic lateral sclerosis or not: Keys for the diagnosis
    Lenglet, T.
    Camdessanche, J-P.
    REVUE NEUROLOGIQUE, 2017, 173 (05) : 280 - 287
  • [32] Gene therapy of amyotrophic lateral sclerosis
    I. A. Zavalishin
    N. P. Bochkov
    Z. A. Suslina
    M. N. Zakharova
    V. Z. Tarantul
    B. S. Naroditskiy
    N. A. Suponeva
    S. N. Illarioshkin
    M. M. Shmarov
    D. Y. Logunov
    I. L. Tutyhina
    L. V. Verkhovskaya
    E. S. Sedova
    A. V. Vasiliev
    L. V. Brylev
    A. L. Ginzburg
    Bulletin of Experimental Biology and Medicine, 2008, 145 : 483 - 486
  • [33] Gene Therapy of Amyotrophic Lateral Sclerosis
    Zavalishin, I. A.
    Bochkov, N. P.
    Suslina, Z. A.
    Zakharova, M. N.
    Tarantul, V. Z.
    Naroditskiy, B. S.
    Suponeva, N. A.
    Illarioshkin, S. N.
    Shmarov, M. M.
    Logunov, D. Y.
    Tutyhina, I. L.
    Verkhovskaya, L. V.
    Sedova, E. S.
    Vasiliev, A. V.
    Brylev, L. V.
    Ginzburg, A. L.
    BULLETIN OF EXPERIMENTAL BIOLOGY AND MEDICINE, 2008, 145 (04) : 483 - 486
  • [34] 5-Repurposed Drug Candidates Identified in Motor Neurons and Muscle Tissues with Amyotrophic Lateral Sclerosis by Network Biology and Machine Learning Based on Gene Expression
    Temiz, Kubra
    Gul, Aytac
    Gov, Esra
    NEUROMOLECULAR MEDICINE, 2025, 27 (01) : 24
  • [35] Mutation analysis of the optineurin gene in familial amyotrophic lateral sclerosis
    Solski, Jennifer A.
    Williams, Kelly L.
    Yang, Shu
    Nicholson, Garth A.
    Blair, Ian P.
    NEUROBIOLOGY OF AGING, 2012, 33 (01) : 210.e9 - 210.e10
  • [36] Advances in the early diagnosis of amyotrophic lateral sclerosis
    Garcia-Casanova, Pilar H.
    Vazquez-Costa, Juan F.
    EXPERT REVIEW OF NEUROTHERAPEUTICS, 2025, 25 (04) : 415 - 425
  • [37] Neurophysiological Testing in the Diagnosis of Amyotrophic Lateral Sclerosis
    Burke, David
    NEUROLOGICAL SCIENCES AND NEUROPHYSIOLOGY, 2022, 39 (01): : 1 - 7
  • [38] Overview of nomenclature and diagnosis of amyotrophic lateral sclerosis
    Xu, Renshi
    ANNALS OF MEDICINE, 2024, 56 (01)
  • [39] C9orf72Gene Expression in Frontotemporal Dementia and Amyotrophic Lateral Sclerosis
    Shpilyukova, Yu. A.
    Fedotova, E. Yu.
    Abramycheva, N. Yu.
    Kochergin, I. A.
    Zakroyshchikova, I. V.
    Zakharova, M. N.
    Illarioshkin, S. N.
    BULLETIN OF EXPERIMENTAL BIOLOGY AND MEDICINE, 2020, 169 (05) : 673 - 676
  • [40] C9orf72 Gene Expression in Frontotemporal Dementia and Amyotrophic Lateral Sclerosis
    Yu. A. Shpilyukova
    E. Yu. Fedotova
    N. Yu. Abramycheva
    I. A. Kochergin
    I. V. Zakroyshchikova
    M. N. Zakharova
    S. N. Illarioshkin
    Bulletin of Experimental Biology and Medicine, 2020, 169 : 673 - 676