Cost-effective fabrication of RF AlGaN/GaN HEMTs on surface activated bonding-bonded SiC-SiC substrate

被引:0
作者
Jing, Guanjun [1 ,2 ]
Xing, Xiangjie [1 ,2 ]
Zhang, Dongguo [3 ]
Mu, Fengwen [4 ]
Huang, Sen [1 ,2 ]
Wei, Ke [1 ,2 ]
Jiang, Qimeng [1 ,2 ]
Wang, Xinhua [1 ,2 ]
Liu, Xinyu [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Microelect, High Frequency High Voltage Device & Integrated Ci, Beijing 100029, Peoples R China
[2] Univ Chinese Acad Sci, Inst Microelect, Beijing 100049, Peoples R China
[3] Nanjing Elect Devices Inst, Nanjing 100048, Peoples R China
[4] Innovat Semicond Substrate Technol Co Ltd, Beijing 100083, Peoples R China
来源
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B | 2025年 / 43卷 / 01期
基金
中国国家自然科学基金;
关键词
PERFORMANCE;
D O I
10.1116/6.0004066
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
High cost of high-purity semi-insulating (HPSI) SiC is a significant barrier to its widespread industrial use as a substrate for RF GaN transistors. This study presents a cost-effective 6 in. SiC-on-SiC (SOS) composite substrate. This novel substrate is created by bonding an HPSI-SiC film onto a more affordable supporting SiC wafer using smart cut and surface activated bonding technologies. This approach not only allows multiple transfers of HPSI-SiC films but also enables the reuse of the supporting substrate, potentially reducing costs by over 60%. The epitaxial AlGaN/GaN heterostructure grown on the SOS substrate exhibited excellent high-resistance properties with minimal RF loss, measuring less than 0.04 dB/mm across frequencies from 30 MHz to 40 GHz. The RF loss characteristics were analyzed using a small signal model, revealing detailed capacitance and resistance behavior. Additionally, an AlGaN/GaN RF device, developed using a 0.12 mu m process on the SOS substrate, achieved good electric performance with an output current of 1.3 A/mm and f(t)/f(max) values of 63.3/173.4 GHz. The SOS substrate offers a cost-effective alternative to traditional GaN substrates while maintaining the high standards required for advanced RF electronic devices.
引用
收藏
页数:8
相关论文
共 27 条
[11]  
Kimoto T, 2014, FUNDAMENTALS OF SILICON CARBIDE TECHNOLOGY: GROWTH, CHARACTERIZATION, DEVICES, AND APPLICATIONS, P1
[12]   Effective resistivity of fully-processed SOI substrates [J].
Lederer, D ;
Raskin, JP .
SOLID-STATE ELECTRONICS, 2005, 49 (03) :491-496
[13]   Highly efficient vertical outgassing channels for low-temperature InP-to-silicon direct wafer bonding on the silicon-on-insulator substrate [J].
Liang, D. ;
Bowers, J. E. .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2008, 26 (04) :1560-1568
[14]   RF loss mechanisms in GaN-based high-electron-mobility-transistor on silicon: Role of an inversion channel at the AlN/Si interface [J].
Luong, Tien Tung ;
Lumbantoruan, Franky ;
Chen, Yen-Yu ;
Ho, Yen-Teng ;
Weng, You-Chen ;
Lin, Yueh-Chin ;
Chang, Shane ;
Chang, Edward-Yi .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2017, 214 (07)
[15]   Robust Thermal Transport across the Surface-Active Bonding SiC-on-SiC [J].
Ma, Guoliang ;
Xiao, Xinglin ;
Meng, Biwei ;
Ma, Yunliang ;
Xing, Xiangjie ;
Wang, Xinhua ;
Mu, Fengwen ;
Yuan, Chao .
ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (16) :20826-20834
[16]   Characterization of low-temperature wafer bonding by infrared spectroscopy [J].
Milekhin, A ;
Friedrich, M ;
Hiller, K ;
Wierner, M ;
Gessner, T ;
Zahn, DRT .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2000, 18 (03) :1392-1396
[17]   Direct Wafer Bonding of SiC-SiC by SAB for Monolithic Integration of SiC MEMS and Electronics [J].
Mu, F. ;
Iguchi, K. ;
Nakazawa, H. ;
Takahashi, Y. ;
Fujino, M. ;
Suga, T. .
ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, 2016, 5 (09) :P451-P456
[18]   A comparison study: Direct wafer bonding of SiC-SiC by standard surface-activated bonding and modified surface-activated bonding with Si-containing Ar ion beam [J].
Mu, Fengwen ;
Iguchi, Kenichi ;
Nakazawa, Haruo ;
Takahashi, Yoshikazu ;
Fujino, Masahisa ;
He, Ran ;
Suga, Tadatomo .
APPLIED PHYSICS EXPRESS, 2016, 9 (08)
[19]  
Palmour JW, 2010, IEEE MTT S INT MICR, P1226, DOI 10.1109/MWSYM.2010.5515973
[20]  
Pcz B., 2007, MICROSCOPY SEMICONDU, P53