OP-Align: Object-Level and Part-Level Alignment for Self-supervised Category-Level Articulated Object Pose Estimation

被引:0
作者
Che, Yuchen [1 ]
Furukawa, Ryo [2 ]
Kanezaki, Asako [1 ]
机构
[1] Tokyo Inst Technol, Tokyo, Japan
[2] Accenture Japan Ltd, Tokyo, Japan
来源
COMPUTER VISION - ECCV 2024, PT LXXV | 2025年 / 15133卷
关键词
6DOF object pose estimation; Dataset creation; Unsupervised learning;
D O I
10.1007/978-3-031-73226-3_5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Category-level articulated object pose estimation focuses on the pose estimation of unknown articulated objects within known categories. Despite its significance, this task remains challenging due to the varying shapes and poses of objects, expensive dataset annotation costs, and complex real-world environments. In this paper, we propose a novel self-supervised approach that leverages a single-frame point cloud to solve this task. Our model consistently generates reconstruction with a canonical pose and joint state for the entire input object, and it estimates object-level poses that reduce overall pose variance and part-level poses that align each part of the input with its corresponding part of the reconstruction. Experimental results demonstrate that our approach significantly outperforms previous self-supervised methods and is comparable to the state-of-the-art supervised methods. To assess the performance of our model in real-world scenarios, we also introduce a new real-world articulated object benchmark dataset (Code and dataset are released at https://github.com/YC-Che/OP-Align.).
引用
收藏
页码:72 / 88
页数:17
相关论文
共 44 条
[1]  
Abbatematteo B, 2019, PR MACH LEARN RES, V100
[2]   Equivariant Point Network for 3D Point Cloud Analysis [J].
Chen, Haiwei ;
Liu, Shichen ;
Chen, Weikai ;
Li, Hao ;
Hill, Randall .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :14509-14518
[3]   FS-Net: Fast Shape-based Network for Category-Level 6D Object Pose Estimation with Decoupled Rotation Mechanism [J].
Chen, Wei ;
Jia, Xi ;
Chang, Hyung Jin ;
Duan, Jinming ;
Shen, Linlin ;
Leonardis, Ales .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :1581-1590
[4]   Command-driven Articulated Object Understanding and Manipulation [J].
Chu, Ruihang ;
Liu, Zhengzhe ;
Ye, Xiaoqing ;
Tan, Xiao ;
Qi, Xiaojuan ;
Fu, Chi-Wing ;
Jia, Jiaya .
2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, :8813-8823
[5]   GPV-Pose: Category-level Object Pose Estimation via Geometry-guided Point-wise Voting [J].
Di, Yan ;
Zhang, Ruida ;
Lou, Zhiqiang ;
Manhardt, Fabian ;
Ji, Xiangyang ;
Navab, Nassir ;
Tombari, Federico .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, :6771-6781
[6]   Array programming with NumPy [J].
Harris, Charles R. ;
Millman, K. Jarrod ;
van der Walt, Stefan J. ;
Gommers, Ralf ;
Virtanen, Pauli ;
Cournapeau, David ;
Wieser, Eric ;
Taylor, Julian ;
Berg, Sebastian ;
Smith, Nathaniel J. ;
Kern, Robert ;
Picus, Matti ;
Hoyer, Stephan ;
van Kerkwijk, Marten H. ;
Brett, Matthew ;
Haldane, Allan ;
del Rio, Jaime Fernandez ;
Wiebe, Mark ;
Peterson, Pearu ;
Gerard-Marchant, Pierre ;
Sheppard, Kevin ;
Reddy, Tyler ;
Weckesser, Warren ;
Abbasi, Hameer ;
Gohlke, Christoph ;
Oliphant, Travis E. .
NATURE, 2020, 585 (7825) :357-362
[7]  
Hausman K, 2015, IEEE INT CONF ROBOT, P3305, DOI 10.1109/ICRA.2015.7139655
[8]  
He KM, 2017, IEEE I CONF COMP VIS, P2980, DOI [10.1109/TPAMI.2018.2844175, 10.1109/ICCV.2017.322]
[9]   MultiBodySync: Multi-Body Segmentation and Motion Estimation via 3D Scan Synchronization [J].
Huang, Jiahui ;
Wang, He ;
Birdal, Tolga ;
Sung, Minhyuk ;
Arrigoni, Federica ;
Hu, Shi-Min ;
Guibas, Leonidas .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :7104-7114
[10]  
Insafutdinov E, 2018, Arxiv, DOI arXiv:1810.09381