Classification of motor imagery EEG with ensemble RNCA model

被引:0
作者
Thenmozhi, T. [1 ]
Helen, R. [2 ]
Mythili, S. [3 ]
机构
[1] Velammal Coll Engn & Technol, Dept Artificial Intelligence & Data Sci, Madurai, India
[2] Saveetha Engn Coll, Dept Med Elect, Chennai, India
[3] PSNA Coll Engn & Technol, Dept Biomed Engn, Dindigul, India
关键词
Channel Selection; Motor Imagery (MI); EEG; LightGBM; BCI; CHANNEL SELECTION METHOD; SINGLE-TRIAL EEG; SPATIAL FILTERS; REDUCTION; FEATURES;
D O I
10.1016/j.bbr.2024.115345
中图分类号
B84 [心理学]; C [社会科学总论]; Q98 [人类学];
学科分类号
03 ; 0303 ; 030303 ; 04 ; 0402 ;
摘要
Motor Imagery (MI) based brain-computer interface (BCI) systems are used for regaining the motor functions of neurophysiologically affected persons. But the performance of MI tasks is degraded due to the presence of redundant EEG channels. Hence, a novel ensemble regulated neighborhood component analysis (ERNCA) method provides a perfect identification of neural region that stimulate motor movements. Domains of statistical, frequency, spatial and transform-based features narrowed down the misclassification rate. The gradient boosting method selects the relevant features thereby reduces the computational complexity. Finally, Bayesian optimized ensemble classifier finetuned the classification accuracies of 97.22 % and 91.62 % for Datasets IIIa and IVa respectively. This approach is further strengthened by analyzing real-time data with the accuracy of 93.75 %. This method qualifies out of four benchmark methods with significant percent of improvement in accuracy for these three datasets. As per the spatial distribution of refined EEG channels, majority of the brain's motor functions concentrates on frontal and central cortex regions of brain.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] An SCA-based classifier for motor imagery EEG classification
    Li, Zhihui
    Meng, Ming
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING, 2024,
  • [42] Shrinkage Estimator Based Regularization for EEG Motor Imagery Classification
    Shenoy, H. Vikram
    Vinod, A. P.
    Guan, Cuntai
    2015 10TH INTERNATIONAL CONFERENCE ON INFORMATION, COMMUNICATIONS AND SIGNAL PROCESSING (ICICS), 2015,
  • [43] A novel method of motor imagery classification using eeg signal
    Venkatachalam, K.
    Devipriya, A.
    Maniraj, J.
    Sivaram, M.
    Ambikapathy, A.
    Amiri, Iraj S.
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2020, 103
  • [44] EEG-based motor imagery classification with quantum algorithms
    Olvera, Cynthia
    Ross, Oscar Montiel
    Rubio, Yoshio
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 247
  • [45] An Adaptive CSP and Clustering Classification for Online Motor Imagery EEG
    Jiang, Qin
    Zhang, Yi
    Ge, Gengyu
    Xie, Zhirong
    IEEE ACCESS, 2020, 8 : 156117 - 156128
  • [46] Enhancing Motor Imagery EEG Signal Classification with Simplified GoogLeNet
    Wang, Lu
    Wang, Junkongshuai
    Wen, Bo
    Mu, Wei
    Liu, Lusheng
    Han, Jiaguan
    Zhang, Lihua
    Jia, Jie
    Kang, Xiaoyang
    2023 11TH INTERNATIONAL WINTER CONFERENCE ON BRAIN-COMPUTER INTERFACE, BCI, 2023,
  • [47] Multiple tangent space projection for motor imagery EEG classification
    Omari, Sara
    Omari, Adil
    Abderrahim, Mohamed
    APPLIED INTELLIGENCE, 2023, 53 (18) : 21192 - 21200
  • [48] EEG motor imagery classification using machine learning techniques
    Paez-Amaro, R. T.
    Moreno-Barbosa, E.
    Hernandez-Lopez, J. M.
    Zepeda-Fernandez, C. H.
    Rebolledo-Herrera, L. F.
    de Celis-Alonso, B.
    REVISTA MEXICANA DE FISICA, 2022, 68 (04)
  • [49] Classification of Motor Imagery EEG Signals Using Machine Learning
    Abdeltawab, Amr
    Ahmad, Anita
    2020 IEEE 10TH INTERNATIONAL CONFERENCE ON SYSTEM ENGINEERING AND TECHNOLOGY (ICSET), 2020, : 196 - 201
  • [50] Multiple tangent space projection for motor imagery EEG classification
    Sara Omari
    Adil Omari
    Mohamed Abderrahim
    Applied Intelligence, 2023, 53 : 21192 - 21200