Classification of motor imagery EEG with ensemble RNCA model

被引:0
|
作者
Thenmozhi, T. [1 ]
Helen, R. [2 ]
Mythili, S. [3 ]
机构
[1] Velammal Coll Engn & Technol, Dept Artificial Intelligence & Data Sci, Madurai, India
[2] Saveetha Engn Coll, Dept Med Elect, Chennai, India
[3] PSNA Coll Engn & Technol, Dept Biomed Engn, Dindigul, India
关键词
Channel Selection; Motor Imagery (MI); EEG; LightGBM; BCI; CHANNEL SELECTION METHOD; SINGLE-TRIAL EEG; SPATIAL FILTERS; REDUCTION; FEATURES;
D O I
10.1016/j.bbr.2024.115345
中图分类号
B84 [心理学]; C [社会科学总论]; Q98 [人类学];
学科分类号
03 ; 0303 ; 030303 ; 04 ; 0402 ;
摘要
Motor Imagery (MI) based brain-computer interface (BCI) systems are used for regaining the motor functions of neurophysiologically affected persons. But the performance of MI tasks is degraded due to the presence of redundant EEG channels. Hence, a novel ensemble regulated neighborhood component analysis (ERNCA) method provides a perfect identification of neural region that stimulate motor movements. Domains of statistical, frequency, spatial and transform-based features narrowed down the misclassification rate. The gradient boosting method selects the relevant features thereby reduces the computational complexity. Finally, Bayesian optimized ensemble classifier finetuned the classification accuracies of 97.22 % and 91.62 % for Datasets IIIa and IVa respectively. This approach is further strengthened by analyzing real-time data with the accuracy of 93.75 %. This method qualifies out of four benchmark methods with significant percent of improvement in accuracy for these three datasets. As per the spatial distribution of refined EEG channels, majority of the brain's motor functions concentrates on frontal and central cortex regions of brain.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Adaptation of motor imagery EEG classification model based on tensor decomposition
    Li, Xinyang
    Guan, Cuntai
    Zhang, Haihong
    Ang, Kai Keng
    Ong, Sim Heng
    JOURNAL OF NEURAL ENGINEERING, 2014, 11 (05)
  • [2] EEG Classification for Multiclass Motor Imagery BCI
    Liu, Chong
    Wang, Hong
    Lu, Zhiguo
    2013 25TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2013, : 4450 - 4453
  • [3] Classification of EEG for Upper Limb Motor Imagery: An Approach for Rehabilitation
    Paul, Yogesh
    Jaswal, Ram Avtar
    2018 FIFTH INTERNATIONAL CONFERENCE ON PARALLEL, DISTRIBUTED AND GRID COMPUTING (IEEE PDGC), 2018, : 346 - 350
  • [4] Classification of motor imagery EEG signals based on energy entropy
    Xiao, Dan
    Mu, Zhengdong
    Hu, Jianfeng
    2009 INTERNATIONAL SYMPOSIUM ON INTELLIGENT UBIQUITOUS COMPUTING AND EDUCATION, 2009, : 61 - 64
  • [5] Comparison of EEG Signal Features and Ensemble Learning Methods for Motor Imagery Classification
    Mohammadpour, Mostafa
    Ghorbanian, MohammadKazem
    Mozaffari, Saeed
    2016 EIGHTH INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE TECHNOLOGY (IKT), 2016, : 288 - 292
  • [6] A novel deep learning approach for classification of EEG motor imagery signals
    Tabar, Yousef Rezaei
    Halici, Ugur
    JOURNAL OF NEURAL ENGINEERING, 2017, 14 (01)
  • [7] Merged CNNs for the classification of EEG motor imagery signals
    Echtioui A.
    Zouch W.
    Ghorbel M.
    Multimedia Tools and Applications, 2025, 84 (1) : 373 - 395
  • [8] Ensemble classifier based on optimized extreme learning machine for motor imagery classification
    Zhang, Li
    Wen, Dezhong
    Li, Changsheng
    Zhu, Rui
    JOURNAL OF NEURAL ENGINEERING, 2020, 17 (02)
  • [9] Motor Imagery EEG Signal Processing and Classification using Machine Learning Approach
    Sreeja, S. R.
    Rabha, Joytirmoy
    Nagarjuna, K. Y.
    Samanta, Debasis
    Mitra, Pabitra
    Sarma, Monalisa
    2017 INTERNATIONAL CONFERENCE ON NEW TRENDS IN COMPUTING SCIENCES (ICTCS), 2017, : 61 - 66
  • [10] Attention based Inception model for robust EEG motor imagery classification
    Amin, Syed Umar
    Altaheri, Hamdi
    Muhammad, Ghulam
    Alsulaiman, Mansour
    Abdul, Wadood
    2021 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC 2021), 2021,