Computational fluid dynamics for naval hydrodynamics

被引:0
作者
Visonneau, Michel [1 ]
Deng, Ganbo [1 ]
Guilmineau, Emmanuel [1 ]
Leroyer, Alban [1 ]
Queutey, Patrick [1 ]
Wackers, Jeroen [1 ]
机构
[1] CNRS, UMR 6598, Cent Nantes, LHEEA Lab, 1 Rue Noe,BP 92101, F-44321 Nantes, France
来源
COMPTES RENDUS MECANIQUE | 2022年 / 350卷
关键词
Naval hydrodynamics; Turbulence; Scale effects; Fluid-structure interaction; Cavitation; Ventilation; Adaptive grid refinement; CAVITATION; PREDICTION; SHIP; SIMULATIONS; TRANSPORT; SOLVER; MODEL; WATER; FLOW; PIV;
D O I
10.5802/crmeca.162
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This article describes key issues which have to be addressed to apply Computational Fluid Dynamics to Naval Hydrodynamics. The specific aspects of Naval Hydrodynamics are discussed and illustrated by recent simulations and comparisons with available experiments. Free-surface flows with or without waves and even violent phenomena such as ventilation or cavitation can be modelled with mixture-fluid surface capturing. Turbulence modelling of thick boundary layers and vortical flows requires anisotropic RANS models or hybrid RANS/LES in case of strongly separated flows. Moreover, fluid-structure interaction in the form of rigid or flexible body motion and multi-body systems is crucial to represent ship manoeuvring and propulsion. Finally, the paper underlines the central role played by anisotropic adaptive grid refinement in the accurate simulation of marine flows.
引用
收藏
页数:20
相关论文
共 69 条
[1]   Online Parallel Paging with Optimal Makespan [J].
Agrawal, Kunal ;
Bender, Michael A. ;
Das, Rathish ;
Kuszmaul, William ;
Peserico, Enoch ;
Scquizzato, Michele .
PROCEEDINGS OF THE 34TH ACM SYMPOSIUM ON PARALLELISM IN ALGORITHMS AND ARCHITECTURES, SPAA 2022, 2022, :205-216
[2]   High-order sonic boom modeling based on adaptive methods [J].
Alauzet, F. ;
Loseille, A. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (03) :561-593
[3]  
Alin N, 2010, J SHIP RES, V54, P184
[4]   Propeller-hull interaction beyond the propulsive factors-A case study on the performance of different propeller designs [J].
Andersson, Jennie ;
Gustafsson, Robert ;
Johansson, Rikard ;
Bensow, Rickard E. .
OCEAN ENGINEERING, 2022, 256
[5]   Review and comparison of methods to model ship hull roughness [J].
Andersson, Jennie ;
Oliveira, Dinis Reis ;
Yeginbayeva, Irma ;
Leer-Andersen, Michael ;
Bensow, Rickard E. .
APPLIED OCEAN RESEARCH, 2020, 99
[6]  
[Anonymous], 2010, Tech. Rep
[7]   Large Eddy Simulations of cavitating tip vortex flows [J].
Asnaghi, Abolfazl ;
Svennberg, Urban ;
Bensow, Rickard E. .
OCEAN ENGINEERING, 2020, 195
[8]   Implicit LES Predictions of the Cavitating Flow on a Propeller [J].
Bensow, Rickard E. ;
Bark, Goeran .
JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2010, 132 (04) :0413021-04130210
[9]   Assessment of Computational Fluid Dynamic for Surface Combatant 5415 at Straight Ahead and Static Drift β=20 deg [J].
Bhushan, S. ;
Yoon, H. ;
Stern, F. ;
Guilmineau, E. ;
Visonneau, M. ;
Toxopeus, S. L. ;
Simonsen, C. ;
Aram, S. ;
Kim, S-E ;
Grigoropoulos, G. .
JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2019, 141 (05)
[10]   Detached eddy simulations and tomographic PIV measurements of flows over surface combatant 5415 at straight-ahead and static drift conditions [J].
Bhushan, Shanti ;
Yoon, Hyunse ;
Stern, Frederick .
OCEAN ENGINEERING, 2021, 238