Complex-Valued Physics-Informed Neural Network for Near-Field Acoustic Holography

被引:0
作者
Luan, Xinmeng [1 ]
Olivieri, Marco [1 ]
Pezzoli, Mirco [1 ]
Antonacci, Fabio [1 ]
Sarti, Augusto [1 ]
机构
[1] Politecn Milan, Dipartimento Elettron Informaz & Bioingn DEIB, Piazza Leonardo Da Vinci 32, I-20133 Milan, Italy
来源
32ND EUROPEAN SIGNAL PROCESSING CONFERENCE, EUSIPCO 2024 | 2024年
关键词
near-field acoustic holography; complex-valued neural networks; physics-informed neural network;
D O I
10.23919/EUSIPCO63174.2024.10715295
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We present a novel approach to Near-field Acoustic Holography (NAH) with the introduction of the Complex-Valued Kirchhoff-Helmholtz Convolutional Neural Network (CV-KHCNN). Our study focuses on analyzing Complex-Valued Neural Networks (CVNNs) in the application of NAH scenario. We compare the performance between CV-KHCNN and its equivalent Real-Valued Neural Networks (RVNNs). Moreover, different complex activation functions are evaluated for CV-KHCNN. The results emphasize the effectiveness of CVNNs in tackling NAH challenges and highlight the suitability of Cardioid as the activation function for CVNNs. This discovery underscores the promising contributions of CVNNs to the field of NAH. T-distributed Stochastic Neighbor Embedding (t-SNE) is further adopted to visualize the features of the embedding layer. The results show that even without prior knowledge of the vibrations, CV-KHCNN demonstrates the capability to distinguish between different boundary conditions (BCs) and mode shapes.
引用
收藏
页码:126 / 130
页数:5
相关论文
共 31 条
  • [11] Kafri H., 2023, INT C AC SPEECH SIGN
  • [12] A METHOD FOR COMPUTING ACOUSTIC FIELDS BASED ON THE PRINCIPLE OF WAVE SUPERPOSITION
    KOOPMANN, GH
    SONG, LM
    FAHNLINE, JB
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1989, 86 (06) : 2433 - 2438
  • [13] Lee S, 2017, J COMPUT ACOUST, V25, DOI [10.1142/S0218396X16300012, 10.18230/tjye.2017.25.4.1]
  • [14] Learning and Avoiding Disorder in Multimode Fibers
    Matthes, Maxime W.
    Bromberg, Yaron
    de Rosny, Julien
    Popoff, Sebastien M.
    [J]. PHYSICAL REVIEW X, 2021, 11 (02):
  • [15] M”nning N, 2018, Arxiv, DOI arXiv:1811.12351
  • [16] Olivieri M., 2020, INTERNOISE NOISE CON
  • [17] Olivieri M., 2023, INT C AC SPEECH SIGN, P1
  • [18] A Physics-Informed Neural Network Approach for Nearfield Acoustic Holography
    Olivieri, Marco
    Pezzoli, Mirco
    Antonacci, Fabio
    Sarti, Augusto
    [J]. SENSORS, 2021, 21 (23)
  • [19] Audio Information Retrieval and Musical Acoustics
    Olivieri, Marco
    Malvermi, Raffaele
    Pezzoli, Mirco
    Zanoni, Massimiliano
    Gonzalez, Sebastian
    Antonacci, Fabio
    Sarti, Augusto
    [J]. IEEE INSTRUMENTATION & MEASUREMENT MAGAZINE, 2021, 24 (07) : 10 - 20
  • [20] Olivieri M, 2021, EUR SIGNAL PR CONF, P121, DOI 10.23919/EUSIPCO54536.2021.9616334