Complex-Valued Physics-Informed Neural Network for Near-Field Acoustic Holography

被引:0
作者
Luan, Xinmeng [1 ]
Olivieri, Marco [1 ]
Pezzoli, Mirco [1 ]
Antonacci, Fabio [1 ]
Sarti, Augusto [1 ]
机构
[1] Politecn Milan, Dipartimento Elettron Informaz & Bioingn DEIB, Piazza Leonardo Da Vinci 32, I-20133 Milan, Italy
来源
32ND EUROPEAN SIGNAL PROCESSING CONFERENCE, EUSIPCO 2024 | 2024年
关键词
near-field acoustic holography; complex-valued neural networks; physics-informed neural network;
D O I
10.23919/EUSIPCO63174.2024.10715295
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We present a novel approach to Near-field Acoustic Holography (NAH) with the introduction of the Complex-Valued Kirchhoff-Helmholtz Convolutional Neural Network (CV-KHCNN). Our study focuses on analyzing Complex-Valued Neural Networks (CVNNs) in the application of NAH scenario. We compare the performance between CV-KHCNN and its equivalent Real-Valued Neural Networks (RVNNs). Moreover, different complex activation functions are evaluated for CV-KHCNN. The results emphasize the effectiveness of CVNNs in tackling NAH challenges and highlight the suitability of Cardioid as the activation function for CVNNs. This discovery underscores the promising contributions of CVNNs to the field of NAH. T-distributed Stochastic Neighbor Embedding (t-SNE) is further adopted to visualize the features of the embedding layer. The results show that even without prior knowledge of the vibrations, CV-KHCNN demonstrates the capability to distinguish between different boundary conditions (BCs) and mode shapes.
引用
收藏
页码:126 / 130
页数:5
相关论文
共 31 条
  • [1] INTERPOLATION OF IRREGULARLY SAMPLED FREQUENCY RESPONSE FUNCTIONS USING CONVOLUTIONAL NEURAL NETWORKS
    Acerbi, M.
    Malvermi, R.
    Pezzoli, M.
    Antonacci, F.
    Sarti, A.
    Corradi, R.
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 950 - 954
  • [2] Arjovsky M, 2016, PR MACH LEARN RES, V48
  • [3] Comparison Between Equivalent Architectures of Complex-valued and Real-valued Neural Networks - Application on Polarimetric SAR Image Segmentation
    Barrachina, Jose Agustin
    Ren, Chengfang
    Morisseau, Christele
    Vieillard, Gilles
    Ovarlez, Jean-Philippe
    [J]. JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2023, 95 (01): : 57 - 66
  • [4] Machine learning aided near-field acoustic holography based on equivalent source method
    Chaitanya, S. K.
    Sriraman, Siddharth
    Srinivasan, Srinath
    Srinivasan, K.
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2023, 153 (02) : 940 - 951
  • [5] Near-field acoustic holography using sparse regularization and compressive sampling principles
    Chardon, Gilles
    Daudet, Laurent
    Peillot, Antoine
    Ollivier, Francois
    Bertin, Nancy
    Gribonval, Remi
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2012, 132 (03) : 1521 - 1534
  • [6] An overview of machine learning and other data-based methods for spatial audio capture, processing, and reproduction
    Cobos, Maximo
    Ahrens, Jens
    Kowalczyk, Konrad
    Politis, Archontis
    [J]. EURASIP JOURNAL ON AUDIO SPEECH AND MUSIC PROCESSING, 2022, 2022 (01)
  • [7] Daval-Frerot G., 2019, INT SOC MAGN RESON M
  • [8] A sparse equivalent source method for near-field acoustic holography
    Fernandez-Grande, Efren
    Xenaki, Angeliki
    Gerstoft, Peter
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2017, 141 (01) : 532 - 542
  • [9] Guberman N, 2016, Arxiv, DOI [arXiv:1602.09046, DOI 10.48550/ARXIV.1602.09046]
  • [10] Hirose A, 2012, STUD COMPUT INTELL, V400, P1, DOI 10.1007/978-3-64227632-3