Existence of renormalized solutions for some noncoercive elliptic problem in a two-component domain with L1 data

被引:0
作者
Hajji, Youssef [1 ]
Hjiaj, Hassane [1 ]
机构
[1] Univ Abdelmalek Essaadi, Fac Sci Tetouan, Dept Math, BP 2121, Tetouan, Morocco
关键词
Quasilinear elliptic equations; Non-coercive problems; Two-component domain; Renormalized solutions; HOMOGENIZATION; EQUATIONS;
D O I
10.1007/s41808-024-00301-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we will focus on studying a specific class of quasilinear elliptic equations with degenerate coercivity in a two-component domain, which is defined as follows: {-div(a(x,u(1),del u(1)))+K(x,del u(1))+lambda(x)|u(1)|(s-1)u(1)=f(x) in Omega(1), -div(a(x,u(2),del u(2)))+K(x,del u(2))+lambda(x)|u(2)|(s-1)u(2)=f(x) in Omega(2), u(1)=0 on partial derivative Omega, a(x,u(1),del u(1))center dot nu(1)=a(x,u(2),del u(2)) center dot nu(1) on Gamma, a(x,u(1),del u(1))center dot nu(1)=-h(x)|u(1)-u(2)|(p-2)(u(1)-u(2)) on Gamma, where Omega is a bounded open set of R-N (N >= 2), with 2 = 2, U-2 Ur, where 2 is an open set such that 2C with a Lipschitz boundary I and N1 = N\N2, lambda(x) > lambda o, s >= 1, 0 <= 8 < 1 and L'(2). We show the existence of a renormalized solutions for this class of equation, and we will conclude some regularity results.
引用
收藏
页码:1301 / 1326
页数:26
相关论文
共 18 条
[1]  
Akdim Y., 2019, ENTROPY SOLUTIONS SO
[2]  
Alvino A., 1998, ATTI SEM MAT FIS U S, V46, P381
[3]   Existence results for nonlinear elliptic equations with degenerate coercivity [J].
Angelo Alvino ;
Lucio Boccardo ;
Vincenzo Ferone ;
Luigi Orsina ;
Guido Trombetti .
Annali di Matematica Pura ed Applicata, 2003, 182 (1) :53-79
[4]  
[Anonymous], 1969, QUELQUES METHODES RE
[5]  
B?nilan P., 1995, ANN SCUOLA NORM-SCI, V22, P241
[6]   INFINITE VALUED SOLUTIONS OF NON-UNIFORMLY ELLIPTIC PROBLEMS [J].
Blanchard, Dominique ;
Guibe, Olivier .
ANALYSIS AND APPLICATIONS, 2004, 2 (03) :227-246
[7]  
Boccardo L., 1998, Atti Semin Mat Fis Univ Modena Reggio Emilia, V46, P51
[8]  
Cabarrubias B, 2011, CARPATHIAN J MATH, V27, P173
[9]  
Croce, 2011, REND MAT, V27, P299, DOI DOI 10.48550/ARXIV.1005.0203
[10]  
Donato P., 2017, J MATH PURE APPL