Computational approaches for the identification of novel metal-binding pharmacophores: advances and challenges

被引:0
作者
Xiong, Guoli [1 ]
Xiao, Zhiyan [1 ,2 ]
机构
[1] Chinese Acad Med Sci & Peking Union Med Coll, Inst Mat Med, State Key Lab Digest Hlth, Beijing 100050, Peoples R China
[2] Chinese Acad Med Sci & Peking Union Med Coll, Inst Mat Med, Beijing Key Lab Act Subst Discovery & Druggabil Ev, Beijing 100050, Peoples R China
关键词
metalloenzyme; metal-binding pharmacophore; conventional modeling; data-driven modeling; LIGAND INTERACTIONS; SCORING FUNCTION; INHIBITORS; DOCKING; DATABASE; PREDICTION; DISCOVERY; FEATURES; SITES;
D O I
10.1016/j.drudis.2025.104293
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Metalloenzymes are important therapeutic targets for a variety of human diseases. Computational approaches have recently emerged as effective tools to understand metal-ligand interactions and expand the structural diversity of both metalloenzyme inhibitors (MIs) and metal-binding pharmacophores (MBPs). In this review, we highlight key advances in currently available fine-tuning modeling methods and data-driven cheminformatic approaches. We also discuss major challenges to the recognition of novel MBPs and MIs. The evidence provided herein could expedite future computational efforts to guide metalloenzyme-based drug discovery.
引用
收藏
页数:9
相关论文
共 71 条
[1]   Probing chelation motifs in HIV integrase inhibitors [J].
Agrawal, Arpita ;
DeSoto, Jamie ;
Fullagar, Jessica L. ;
Maddali, Kasthuraiah ;
Rostami, Shahrzad ;
Richman, Douglas D. ;
Pommier, Yves ;
Cohen, Seth M. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (07) :2251-2256
[2]   Metal-MACiE: a database of metals involved in biological catalysis [J].
Andreini, Claudia ;
Bertini, Ivano ;
Cavallaro, Gabriele ;
Holliday, Gemma L. ;
Thornton, Janet M. .
BIOINFORMATICS, 2009, 25 (16) :2088-2089
[3]   Using Machine Learning and Molecular Docking to Leverage Urease Inhibition Data for Virtual Screening [J].
Aniceto, Natalia ;
Albuquerque, Tania S. ;
Bonifacio, Vasco D. B. ;
Guedes, Rita C. ;
Martinho, Nuno .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (09)
[4]   An Accurate Metalloprotein-Specific Scoring Function and Molecular Docking Program Devised by a Dynamic Sampling and Iteration Optimization Strategy [J].
Bai, Fang ;
Liao, Sha ;
Gu, Junfeng ;
Jiang, Hualiang ;
Wang, Xicheng ;
Li, Honglin .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2015, 55 (04) :833-847
[5]   Amyotrophic lateral sclerosis disease-related mutations disrupt the dimerization of superoxide dismutase 1-A comparative molecular dynamics simulation study [J].
Basith, Shaherin ;
Manavalan, Balachandran ;
Lee, Gwang .
COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 151
[6]   Structure-Based Design of Potent Aromatase Inhibitors by High-Throughput Docking [J].
Caporuscio, Fabiana ;
Rastelli, Giulio ;
Imbriano, Carol ;
Del Rio, Alberto .
JOURNAL OF MEDICINAL CHEMISTRY, 2011, 54 (12) :4006-4017
[7]   MDB: The metalloprotein database and browser at the scripps research institute [J].
Castagnetto, JM ;
Hennessy, SW ;
Roberts, VA ;
Getzoff, ED ;
Tainer, JA ;
Pique, ME .
NUCLEIC ACIDS RESEARCH, 2002, 30 (01) :379-382
[8]   Developing C2-Aroyl Indoles as Novel Inhibitors of IDO1 and Understanding Their Mechanism of Inhibition via Mass Spectroscopy, QM/MM Calculations and Molecular Dynamics Simulation [J].
Chauhan, Jyoti ;
Maddi, Srinivas R. R. ;
Dubey, Kshatresh Dutta ;
Sen, Subhabrata .
FRONTIERS IN CHEMISTRY, 2021, 9
[9]   Targeting Metalloenzymes for Therapeutic Intervention [J].
Chen, Allie Y. ;
Adamek, Rebecca N. ;
Dick, Benjamin L. ;
Credille, Cy V. ;
Morrison, Christine N. ;
Cohen, Seth M. .
CHEMICAL REVIEWS, 2019, 119 (02) :1323-1455
[10]   MetLigDB: a web-based database for the identification of chemical groups to design metalloprotein inhibitors [J].
Choi, Hwanho ;
Kang, Hongsuk ;
Park, Hwangseo .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2011, 44 :878-881