Boundary Mittag-Leffler stabilization and disturbance rejection for time fractional ODE diffusion-wave equation cascaded systems

被引:0
作者
Sun, Jiake [1 ]
Wang, Junmin [1 ]
机构
[1] Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2025年 / 142卷
基金
中国国家自然科学基金;
关键词
Backstepping method; Sliding mode control; Galerkin's method; Mittag-Leffler stability; INTEGRODIFFERENTIAL EQUATION; FEEDBACK STABILIZATION; HEAT-EQUATION; SUBJECT;
D O I
10.1016/j.cnsns.2024.108568
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates the boundary stabilization of time fractional-order ODE cascaded with time fractional-order diffusion-wave equation systems subject to external disturbance. We stabilize the systems by using sliding mode control method and backstepping method. We prove the existence of the generalized solution of the closed-loop systems by Galerkin's method and successive approximation method. The Mittag-Leffler stability of the systems is proven by Lyapunov method. The numerical simulations are presented to illustrate the validity of the theoretical results.
引用
收藏
页数:13
相关论文
共 40 条
[1]   Lyapunov functions for fractional order systems [J].
Aguila-Camacho, Norelys ;
Duarte-Mermoud, Manuel A. ;
Gallegos, Javier A. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (09) :2951-2957
[2]   Boundary control strategy for three kinds of fractional heat equations with control-matched disturbances [J].
Cai, Rui-Yang ;
Zhou, Hua-Cheng ;
Kou, Chun-Hai .
CHAOS SOLITONS & FRACTALS, 2021, 146
[3]   Asymptotic stabilisation of coupled delayed time fractional reaction diffusion systems with boundary input disturbances via backstepping sliding-mode control [J].
Chen, Juan ;
Zhuang, Bo ;
Yu, Yajuan .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2022, 53 (14) :3112-3130
[4]   State and output feedback boundary control of time fractional PDE-fractional ODE cascades with space-dependent diffusivity [J].
Chen, Juan ;
Tepljakov, Aleksei ;
Petlenkov, Eduard ;
Chen, YangQuan ;
Zhuang, Bo .
IET CONTROL THEORY AND APPLICATIONS, 2020, 14 (20) :3589-3600
[5]  
FUJITA Y, 1990, OSAKA J MATH, V27, P309
[6]  
FUJITA Y, 1990, OSAKA J MATH, V27, P797
[7]   Mittag-Leffler convergent backstepping observers for coupled semilinear subdiffusion systems with spatially varying parameters [J].
Ge, Fudong ;
Meurer, Thomas ;
Chen, YangQuan .
SYSTEMS & CONTROL LETTERS, 2018, 122 :86-92
[8]   Output Feedback Stabilization for One-Dimensional Wave Equation Subject to Boundary Disturbance [J].
Guo, Bao-Zhu ;
Jin, Feng-Fei .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2015, 60 (03) :824-830
[9]   Lyapunov approach to the boundary stabilisation of a beam equation with boundary disturbance [J].
Guo, Bao-Zhu ;
Kang, Wen .
INTERNATIONAL JOURNAL OF CONTROL, 2014, 87 (05) :925-939
[10]   The boundary control strategy for a fractional wave equation with external disturbances [J].
Jiang, Jingfei ;
Garcia Guirao, Juan Luis ;
Chen, Huatao ;
Cao, Dengqing .
CHAOS SOLITONS & FRACTALS, 2019, 121 :92-97