Relativistic two-wave resonant acceleration of electrons at large-amplitude standing whistler waves during laser-plasma interaction

被引:0
作者
Sano, Takayoshi [1 ]
Isayama, Shogo [2 ,3 ]
Takahashi, Kenta [4 ]
Matsukiyo, Shuichi [1 ,2 ,3 ]
机构
[1] Osaka Univ, Inst Laser Engn, Suita, Osaka 5650871, Japan
[2] Kyushu Univ, Fac Engn Sci, Fukuoka 8168580, Japan
[3] Kyushu Univ, Int Res Ctr Space & Planetary Environm Sci iSPES, Nishi Ku, Fukuoka 8190395, Japan
[4] Kyushu Univ, Interdisciplinary Grad Sch Engn Sci, Fukuoka 8168580, Japan
关键词
MAGNETIC-FIELD; GENERATION; PARTICLES; DRIVEN;
D O I
10.1103/PhysRevE.110.065212
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The interaction between a thin foil target and a circularly polarized laser light injected along an external magnetic field is investigated numerically by particle-in-cell simulations. A standing wave appears at the front surface of the target, overlapping the injected and partially reflected waves. Hot electrons are efficiently generated at the standing wave due to the relativistic two-wave resonant acceleration if the magnetic field amplitude of the standing wave is larger than the ambient field. A bifurcation occurs in the gyration motion of electrons, allowing all electrons with nonrelativistic velocities to acquire relativistic energy through the cyclotron resonance. The optimal conditions for the highest energy and the most significant fraction of hot electrons are derived precisely through a simple analysis of test-particle trajectories in the standing wave. Since the number of hot electrons increases drastically by many orders of magnitude compared to the conventional unmagnetized cases, this acceleration could be a great advantage in laser-driven ion acceleration and its applications.
引用
收藏
页数:20
相关论文
共 46 条
  • [1] Yang X. H., Yu W., Xu H., Yu M. Y., Ge Z. Y., Xu B. B., Zhuo H. B., Ma Y. Y., Shao F. Q., Borghesi M., Appl. Phys. Lett, 106, (2015)
  • [2] Feng W., Li J. Q., Kishimoto Y., Phys. Plasmas, 23, (2016)
  • [3] Luan S. X., Yu W., Li F. Y., Wu D., Sheng Z. M., Yu M. Y., Zhang J., Phys. Rev. E, 94, (2016)
  • [4] Sano T., Tanaka Y., Iwata N., Hata M., Mima K., Murakami M., Sentoku Y., Phys. Rev. E, 96, (2017)
  • [5] Sano T., Hata M., Kawahito D., Mima K., Sentoku Y., Phys. Rev. E, 100, (2019)
  • [6] Park J., Bulanov S. S., Bin J., Ji Q., Steinke S., Vay J.-L., Geddes C. G. R., Schroeder C. B., Leemans W. P., Schenkel T., Esarey E., Phys. Plasmas, 26, (2019)
  • [7] Sano T., Fujioka S., Mori Y., Mima K., Sentoku Y., Phys. Rev. E, 101, (2020)
  • [8] Sano T., Tatsumi Y., Hata M., Sentoku Y., Phys. Rev. E, 102, (2020)
  • [9] Hata M., Sano T., Sentoku Y., Nagatomo H., Sakagami H., Phys. Rev. E, 104, (2021)
  • [10] Karmakar M., Sengupta S., Patel B., Phys. Scr, 96, (2021)