Liquid-Vapor phase separation under shear by a pseudopotential lattice Boltzmann method

被引:0
|
作者
Lin, Chuandong [1 ,2 ,3 ]
Shen, Sisi [1 ]
Wang, Shuange [1 ]
Hou, Guoxing [4 ]
Fei, Linlin [5 ]
机构
[1] Sun Yat Sen Univ, Sino French Inst Nucl Engn & Technol, Zhuhai 519082, Peoples R China
[2] Tsinghua Univ, Dept Energy & Power Engn, Key Lab Thermal Sci & Power Engn, Minist Educ, Beijing 100084, Peoples R China
[3] Natl Univ Singapore, Dept Mech Engn, 10 Kent Ridge Crescent, Singapore 119260, Singapore
[4] China Jiliang Univ, Coll Metrol Measurement & Instrument, Hangzhou 310018, Peoples R China
[5] Xi An Jiao Tong Univ, Sch Energy & Power Engn, Key Lab Thermo Fluid Sci & Engn, Minist Educ, Xian 710049, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
phase separation; multiphase flow; shear flow; lattice Boltzmann method; MULTIPHASE FLOW; SIMULATION; EQUATION; MODEL; GAS;
D O I
10.1088/1572-9494/adab60
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, the liquid-vapor phase separation under viscous shear is investigated by using a pseudopotential central moment lattice Boltzmann method. Physically, the multiphase shear flow is governed by two competing mechanisms: surface tension and shear force. It is interesting to find that the liquid tends to form a droplet when the surface tension dominates under conditions of low temperature, shear velocity, and viscosity, and in larger domain size. Otherwise, the liquid tends to form a band if shear force dominates. Moreover, the average density gradient is used as a physical criterion to distinguish the spinodal decomposition and domain growth. Both spatial and temporal changes of density are studied during the phase separation under shear.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Numerical study on inertial effects on liquid-vapor flow using lattice Boltzmann method
    Lei, Shurong
    Shi, Yong
    Yan, Yuying
    Zhang, Xingxing
    2ND INTERNATIONAL CONFERENCE ON ENERGY AND POWER (ICEP2018), 2019, 160 : 428 - 435
  • [22] Lattice-Boltzmann model for van der Waals fluids with liquid-vapor phase transition
    Zhang, Chunhua
    Liang, Hong
    Yuan, Xiaolei
    Liu, Gaojie
    Guo, Zhaoli
    Wang, Lianping
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2021, 179
  • [23] Lattice Boltzmann model for capillary interactions between particles at a liquid-vapor interface under gravity
    Mino, Yasushi
    Tanaka, Hazuki
    Nakaso, Koichi
    Gotoh, Kuniaki
    Shinto, Hiroyuki
    PHYSICAL REVIEW E, 2022, 105 (04)
  • [24] Finite-difference lattice Boltzmann model for liquid-vapor systems
    Cristea, A.
    Gonnella, G.
    Lamura, A.
    Sofonea, V.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2006, 72 (2-6) : 113 - 116
  • [25] Lattice Boltzmann kinetic modeling and simulation of thermal liquid-vapor system
    Gan, Yanbiao
    Xu, Aiguo
    Zhang, Guangcai
    Wang, Junqi
    Yu, Xijun
    Yang, Yang
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2014, 25 (12):
  • [26] Improved three-dimensional thermal multiphase lattice Boltzmann model for liquid-vapor phase change
    Li, Qing
    Yu, Y.
    Luo, Kai H.
    PHYSICAL REVIEW E, 2022, 105 (02)
  • [27] Improved thermal multiple-relaxation-time lattice Boltzmann model for liquid-vapor phase change
    Zhang, Shengyuan
    Tang, Jun
    Wu, Huiying
    Huang, Rongzong
    PHYSICAL REVIEW E, 2021, 103 (04)
  • [28] Liquid-vapor phase separation in a thermocapillary force field
    Beysens, D
    Garrabos, Y
    Nikolayev, VS
    Lecoutre-Chabot, C
    Delville, JP
    Hegseth, J
    EUROPHYSICS LETTERS, 2002, 59 (02): : 245 - 251
  • [29] Lattice Boltzmann simulation of liquid-vapor system by incorporating a surface tension term
    Song Bao-Wei
    Ren Feng
    Hu Hai-Bao
    Huang Qiao-Gao
    CHINESE PHYSICS B, 2015, 24 (01)
  • [30] A phase-field Lattice Boltzmann method for liquid-vapor phase change problems based on conservative Allen-Cahn equation and adaptive treegrid
    Wang, Kai
    Xia, Yan-Chen
    Li, Zeng-Yao
    COMPUTERS & FLUIDS, 2023, 264