HyperCL: A Contrastive Learning Framework for Hyper-Relational Knowledge Graph Embedding with Hierarchical Ontology

被引:0
|
作者
Lu, Yuhuan [1 ,2 ]
Yu, Weijian [1 ,2 ]
Jing, Xin [1 ,2 ]
Yang, Dingqi [1 ,2 ]
机构
[1] Univ Macau, State Key Lab Internet Things Smart City, Taipa, Macao, Peoples R China
[2] Univ Macau, Dept Comp & Informat Sci, Taipa, Macao, Peoples R China
来源
FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: ACL 2024 | 2024年
关键词
LINK PREDICTION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Knowledge Graph (KG) embeddings are essential for link prediction over KGs. Compared to triplets, hyper-relational facts consisting of a base triplet and an arbitrary number of keyvalue pairs, can better characterize real-world facts and have aroused various hyper-relational embedding techniques recently. Nevertheless, existing works seldom consider the ontology of KGs, which is beneficial to link prediction tasks. A few studies attempt to incorporate the ontology information, by either utilizing the ontology as constraints on entity representations or jointly learning from hyper-relational facts and the ontology. However, existing approaches mostly overlook the ontology hierarchy and suffer from the dominance issue of facts over ontology, resulting in suboptimal performance. Against this background, we propose a universal contrastive learning framework for hyper-relational KG embeddings (HyperCL), which is flexible to integrate different hyper-relational KG embedding methods and effectively boost their link prediction performance. HyperCL designs relationaware Graph Attention Networks to capture the hierarchical ontology and a concept-aware contrastive loss to alleviate the dominance issue. We evaluate HyperCL on three real-world datasets in different link prediction tasks. Experimental results show that HyperCL consistently boosts the performance of state-of-theart baselines with an average improvement of 3.1-7.4% across the three datasets.
引用
收藏
页码:2918 / 2929
页数:12
相关论文
共 50 条
  • [21] Learning graph attention-aware knowledge graph embedding
    Li, Chen
    Peng, Xutan
    Niu, Yuhang
    Zhang, Shanghang
    Peng, Hao
    Zhou, Chuan
    Li, Jianxin
    NEUROCOMPUTING, 2021, 461 : 516 - 529
  • [22] Knowledge graph embedding by relational rotation and complex convolution for link prediction
    Thanh Le
    Nam Le
    Bac Le
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 214
  • [23] TARGAT: A Time-Aware Relational Graph Attention Model for Temporal Knowledge Graph Embedding
    Xie, Zhiwen
    Zhu, Runjie
    Liu, Jin
    Zhou, Guangyou
    Huang, Jimmy Xiangji
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2023, 31 : 2246 - 2258
  • [24] Learning Knowledge Graph Embedding with Batch Circle Loss
    Wu, Yang
    Huang, Wenli
    Hui, Siqi
    Wang, Jinjun
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [25] Graph2Seq: Fusion Embedding Learning for Knowledge Graph Completion
    Li, Weidong
    Zhang, Xinyu
    Wang, Yaqian
    Yan, Zhihuan
    Peng, Rong
    IEEE ACCESS, 2019, 7 : 157960 - 157971
  • [26] Recalibration convolutional networks for learning interaction knowledge graph embedding
    Li, Zhifei
    Liu, Hai
    Zhang, Zhaoli
    Liu, Tingting
    Shu, Jiangbo
    NEUROCOMPUTING, 2021, 427 : 118 - 130
  • [27] Learning Temporal and Spatial Embedding for Temporal Knowledge Graph Reasoning
    Zuo, Yayao
    Zhou, Yang
    Liu, Zhengwei
    Wu, Jiayang
    Zhan, Minghao
    PRICAI 2022: TRENDS IN ARTIFICIAL INTELLIGENCE, PT II, 2022, 13630 : 127 - 138
  • [28] Learning Knowledge Graph Embedding With Heterogeneous Relation Attention Networks
    Li, Zhifei
    Liu, Hai
    Zhang, Zhaoli
    Liu, Tingting
    Xiong, Neal N.
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (08) : 3961 - 3973
  • [29] MHRN: A multi-perspective hierarchical relation network for knowledge graph embedding
    Xue, Zengcan
    Zhang, Zhaoli
    Liu, Hai
    Li, Zhifei
    Han, Shuyun
    Zhang, Erqi
    KNOWLEDGE-BASED SYSTEMS, 2025, 313
  • [30] Knowledge graph completion with low-dimensional gated hierarchical hyperbolic embedding
    Fang, Yan
    Liu, Xiaodong
    Lu, Wei
    Pedrycz, Witold
    Lang, Qi
    Yang, Jianhua
    KNOWLEDGE-BASED SYSTEMS, 2025, 309