HyperCL: A Contrastive Learning Framework for Hyper-Relational Knowledge Graph Embedding with Hierarchical Ontology

被引:0
|
作者
Lu, Yuhuan [1 ,2 ]
Yu, Weijian [1 ,2 ]
Jing, Xin [1 ,2 ]
Yang, Dingqi [1 ,2 ]
机构
[1] Univ Macau, State Key Lab Internet Things Smart City, Taipa, Macao, Peoples R China
[2] Univ Macau, Dept Comp & Informat Sci, Taipa, Macao, Peoples R China
来源
FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: ACL 2024 | 2024年
关键词
LINK PREDICTION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Knowledge Graph (KG) embeddings are essential for link prediction over KGs. Compared to triplets, hyper-relational facts consisting of a base triplet and an arbitrary number of keyvalue pairs, can better characterize real-world facts and have aroused various hyper-relational embedding techniques recently. Nevertheless, existing works seldom consider the ontology of KGs, which is beneficial to link prediction tasks. A few studies attempt to incorporate the ontology information, by either utilizing the ontology as constraints on entity representations or jointly learning from hyper-relational facts and the ontology. However, existing approaches mostly overlook the ontology hierarchy and suffer from the dominance issue of facts over ontology, resulting in suboptimal performance. Against this background, we propose a universal contrastive learning framework for hyper-relational KG embeddings (HyperCL), which is flexible to integrate different hyper-relational KG embedding methods and effectively boost their link prediction performance. HyperCL designs relationaware Graph Attention Networks to capture the hierarchical ontology and a concept-aware contrastive loss to alleviate the dominance issue. We evaluate HyperCL on three real-world datasets in different link prediction tasks. Experimental results show that HyperCL consistently boosts the performance of state-of-theart baselines with an average improvement of 3.1-7.4% across the three datasets.
引用
收藏
页码:2918 / 2929
页数:12
相关论文
共 50 条
  • [1] Beyond Triplets: Hyper-Relational Knowledge Graph Embedding for Link Prediction
    Rosso, Paolo
    Yang, Dingqi
    Cudre-Mauroux, Philippe
    WEB CONFERENCE 2020: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2020), 2020, : 1885 - 1896
  • [2] Independent Embedding-Based Relational Enhancement Model for Hyper-Relational Knowledge Graph
    Han, Qilong
    Li, Jiahang
    Lu, Dan
    Li, Lijie
    Xie, Bingyi
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, DASFAA 2024, PT IV, 2024, 14853 : 496 - 506
  • [3] Dual-view embedding for hyper-relational knowledge graphs with hierarchical structure
    Liu, Shuang
    Xu, Liangyang
    Liu, Yiying
    Kolmanic, Simon
    JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2025,
  • [4] Learning Representations for Hyper-Relational Knowledge Graphs
    Shomer, Harry
    Jin, Wei
    Li, Juanhui
    Ma, Yao
    Liu, Hui
    PROCEEDINGS OF THE 2023 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING, ASONAM 2023, 2023, : 253 - 257
  • [5] Path-based Link Prediction on Hyper-relational Knowledge Graph
    Liu, Shuzhi
    Di, Shimin
    Peng, Jianwen
    Yao, Quanming
    2024 IEEE CONFERENCE ON ARTIFICIAL INTELLIGENCE, CAI 2024, 2024, : 1071 - 1074
  • [6] Structure-Aware Transformer for hyper-relational knowledge graph completion
    Wang, Junjie
    Chen, Huajun
    Zhang, Wen
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 277
  • [7] HYPER2: Hyperbolic embedding for hyper-relational link prediction
    Yan, Shiyao
    Zhang, Zequn
    Sun, Xian
    Xu, Guangluan
    Jin, Li
    Li, Shuchao
    NEUROCOMPUTING, 2022, 492 : 440 - 451
  • [8] Schema-Aware Hyper-Relational Knowledge Graph Embeddings for Link Prediction
    Lu, Yuhuan
    Yang, Dingqi
    Wang, Pengyang
    Rosso, Paolo
    Cudre-Mauroux, Philippe
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (06) : 2614 - 2628
  • [9] HIAE: Hyper-Relational Interaction Aware Embedding for Link Prediction
    Li, Lijie
    Yuan, Peikai
    Wang, Ye
    Li, Jiahang
    2022 IEEE 34TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, ICTAI, 2022, : 355 - 360
  • [10] A Hierarchical Knowledge Graph Embedding Framework for Link Prediction
    Liu, Shuang
    Hou, Chengwang
    Meng, Jiana
    Chen, Peng
    Kolmanic, Simon
    IEEE ACCESS, 2024, 12 : 173338 - 173350