Asymptotic behavior for the fast diffusion equation with absorption and singularity

被引:0
作者
Xie, Changping [1 ,4 ]
Fang, Shaomei [1 ]
Mei, Ming [2 ,3 ,4 ]
Qin, Yuming [5 ,6 ]
机构
[1] South China Agr Univ, Coll Math & Informat, Guangzhou 510642, Guangdong, Peoples R China
[2] Jiangxi Normal Univ, Sch Math & Stat, Nanchang 330022, Jiangxi, Peoples R China
[3] Champlain Coll, Dept Math, St Lambert, PQ J4P 3P2, Canada
[4] McGill Univ, Dept Math & Stat, Montreal, PQ H3A 2K6, Canada
[5] Donghua Univ, Inst Nonlinear Sci, Shanghai 200051, Peoples R China
[6] Donghua Univ, Sch Math & Stat, Shanghai 200051, Peoples R China
基金
加拿大自然科学与工程研究理事会;
关键词
Fast diffusion; Decay estimate; Asymptotic behavior; Generalized Shannon's inequality; Entropy dissipation method; POROUS-MEDIA EQUATION; LARGE TIME BEHAVIOR; BLOW-UP; STABILITY; EXISTENCE;
D O I
10.1016/j.jde.2024.09.026
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned with the weak solution for the fast diffusion equation with absorption and singularity in the form of u(t) = Delta u(m) - u(p). We first prove the existence and decay estimate of weak solution when the fast diffusion index satisfies 0 < m < 1 and the absorption index is p > 1. Then we show the asymptotic convergence of weak solution to the corresponding Barenblatt solution for n-1/n < m < 1 and p > m + 2/n via the entropy dissipation method combining the generalized Shannon's inequality and Csisz & aacute;r-Kullback inequality. The singularity of spatial diffusion causes us the technical challenges for the asymptotic behavior of weak solution. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:722 / 745
页数:24
相关论文
共 37 条
[1]   LOCAL EXISTENCE AND UNIQUENESS OF SOLUTIONS OF DEGENERATE PARABOLIC EQUATIONS [J].
ANDERSON, JR .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1991, 16 (01) :105-143
[2]   Necessary and sufficient conditions for the unique solvability of a nonlinear reaction-diffusion model [J].
Anderson, JR .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 228 (02) :483-494
[3]  
Barenblatt G.I., 1996, SCALING SELF SIMILAR, DOI [10.1017/CBO9781107050242, DOI 10.1017/CBO9781107050242]
[4]   Large time behavior for the fast diffusion equation with critical absorption [J].
Benachour, Said ;
Gabriel Iagar, Razvan ;
Laurencot, Philippe .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (11) :8000-8024
[5]   Asymptotics of the Fast Diffusion Equation via Entropy Estimates [J].
Blanchet, Adrien ;
Bonforte, Matteo ;
Dolbeault, Jean ;
Grillo, Gabriele ;
Vazquez, Juan Luis .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2009, 191 (02) :347-385
[6]   Sharp rates of decay of solutions to the nonlinear fast diffusion equation via functional inequalities [J].
Bonforte, M. ;
Dolbeault, J. ;
Grillo, G. ;
Vazquez, J. L. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (38) :16459-16464
[7]  
Bonforte M, 2021, Mem. AMS, P171
[8]   The Cauchy-Dirichlet problem for the fast diffusion equation on bounded domains [J].
Bonforte, Matteo ;
Figalli, Alessio .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2024, 239
[9]   Special Fast Diffusion with Slow Asymptotics: Entropy Method and Flow on a Riemannian Manifold [J].
Bonforte, Matteo ;
Grillo, Gabriele ;
Vazquez, Juan Luis .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 196 (02) :631-680
[10]  
Borelli M., 1994, REND I MAT U TRIESTE, V26, P109