Finite-size scaling of Landau-Ginzburg model for fractal time processes

被引:0
|
作者
Zeng, Shaolong [1 ,2 ]
Hu, Yangfan [1 ,2 ]
Tan, Shijing [3 ,4 ]
Wang, Biao [1 ,2 ]
机构
[1] Dongguan Univ Technol, Res Inst Interdisciplinary Sci, Dongguan, Peoples R China
[2] Dongguan Univ Technol, Sch Mat Sci & Engn, Dongguan, Peoples R China
[3] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[4] Univ Sci & Technol China, Dept Chem Phys, Hefei 230026, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Critical exponents; Finite-size scaling; Fractal time process; Landau-Ginzburg model; Temporal long-range interactions; RENORMALIZATION-GROUP;
D O I
10.1016/j.chaos.2024.115926
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The universality of critical phenomena and finite-size scaling are effective methods for measuring critical exponents in experiments and inferring the intrinsic interactions within materials. Here, we establish the finite-size scaling form of the Landau-Ginzburg model for fractal time processes and quantitatively calculate the critical exponents at the upper critical dimension. Interestingly, contrary to the traditional conception that critical exponents are independent of dynamic processes and proportional to correlation length, we find that fractal time processes can not only change critical exponents but also yield a scaling form of size dependent on fractional order and spatial dimension. These theoretical results provide a reasonable method to determine and measure the existence of fractal time processes and their associated critical exponents. The simulations of the Landau-Ginzburg model with fractional temporal derivatives and the Ising model with long-range temporal interactions not only reveal critical exponents distinct from those of standard models but also exhibit unique size effects characteristic of fractal time processes. These results validate the emergence of a new universality class and confirm the predictions of the finite-size scaling theory for fractal time processes.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Renormalized Gaussian approach to critical fluctuations in the Landau-Ginzburg-Wilson model and finite-size scaling
    Tsiaze, R. M. Keumo
    Tchouobiap, S. E. Mkam
    Danga, J. E.
    Domngang, S.
    Hounkonnou, M. N.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (28)
  • [2] Microcanonical Finite-Size Scaling
    Michael Kastner
    Michael Promberger
    Alfred Hüller
    Journal of Statistical Physics, 2000, 99 : 1251 - 1264
  • [3] Microcanonical finite-size scaling
    Kastner, M
    Promberger, M
    Hüller, A
    JOURNAL OF STATISTICAL PHYSICS, 2000, 99 (5-6) : 1251 - 1264
  • [4] The Finite-Size Scaling Study of the Ising Model for the Fractals
    Merdan, Z.
    Bayirli, M.
    Gunen, A.
    Bulbul, M.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2016, 55 (04) : 2031 - 2039
  • [5] Finite-size scaling behavior in the O(4) model
    Braun, Jens
    Klein, Bertram
    EUROPEAN PHYSICAL JOURNAL C, 2009, 63 (03): : 443 - 460
  • [6] On the arithmetic of Landau-Ginzburg model of a certain class of threefolds
    Da Silva, Genival, Jr.
    COMMUNICATIONS IN NUMBER THEORY AND PHYSICS, 2019, 13 (01) : 149 - 163
  • [7] The Finite-Size Scaling Study of the Ising Model for the Fractals
    Z. Merdan
    M. Bayirli
    A. Günen
    M. Bülbül
    International Journal of Theoretical Physics, 2016, 55 : 2031 - 2039
  • [8] Finite-size scaling behavior in the O(4) model
    Jens Braun
    Bertram Klein
    The European Physical Journal C, 2009, 63 : 443 - 460
  • [9] Genus-one mirror symmetry in the Landau-Ginzburg model
    Guo, Shuai
    Ross, Dustin
    ALGEBRAIC GEOMETRY, 2019, 6 (03): : 260 - 301
  • [10] FINITE-SIZE SCALING OF THE INTERFACIAL-TENSION
    MORRIS, JJ
    JOURNAL OF STATISTICAL PHYSICS, 1992, 69 (3-4) : 539 - 571