Bounds on the Pythagoras number and indecomposables in biquadratic fields

被引:0
|
作者
Tinkova, Magdalena [1 ,2 ,3 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Dept Algebra, Sokolovska 83, Prague, Czech Republic
[2] Czech Tech Univ, Fac Informat Technol, Thakurova 9, Prague, Czech Republic
[3] Graz Univ Technol, Inst Anal & Number Theory, Kopernikusgasse 24-2, Graz, Austria
关键词
Pythagoras number; biquadratic fields; additively indecomposable integers; UNIVERSAL QUADRATIC-FORMS; TOTALLY POSITIVE NUMBERS; INTEGERS; ELEMENTS; ORDERS; RANK;
D O I
10.1017/S0013091525000112
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that for all real biquadratic fields not containing $\sqrt{2}$, $\sqrt{3}$, $\sqrt{5}$, $\sqrt{6}$, $\sqrt{7}$ and $\sqrt{13}$, the Pythagoras number of the ring of algebraic integers is at least 6. We also provide an upper bound on the norm and the minimal (codifferent) trace of additively indecomposable integers in some families of these fields.
引用
收藏
页数:26
相关论文
共 50 条
  • [41] MONOGENIC BIQUADRATIC FIELDS
    GRAS, MN
    TANOE, F
    MANUSCRIPTA MATHEMATICA, 1995, 86 (01) : 63 - 79
  • [42] Genus fields of real biquadratic fields
    Qin Yue
    The Ramanujan Journal, 2010, 21 : 17 - 25
  • [43] On the 2-class field tower of some imaginary biquadratic number fields
    Elliot Benjamin
    The Ramanujan Journal, 2006, 11 : 103 - 110
  • [44] Hilbert genus fields of biquadratic fields
    OUYANG Yi
    ZHANG Zhe
    Science China(Mathematics), 2014, 57 (10) : 2111 - 2122
  • [45] ON THE RANK OF THE 2-CLASS GROUP OF SOME IMAGINARY BIQUADRATIC NUMBER FIELDS
    Mouhib, A.
    Rouas, S.
    ACTA MATHEMATICA HUNGARICA, 2022, 167 (01) : 295 - 308
  • [46] Hilbert genus fields of biquadratic fields
    Yi Ouyang
    Zhe Zhang
    Science China Mathematics, 2014, 57 : 2111 - 2122
  • [47] ON THE RESOLUTION OF INDEX FORM EQUATIONS IN BIQUADRATIC NUMBER-FIELDS .1.
    GAAL, I
    PETHO, A
    POHST, M
    JOURNAL OF NUMBER THEORY, 1991, 38 (01) : 18 - 34
  • [48] Hilbert genus fields of biquadratic fields
    Ouyang Yi
    Zhang Zhe
    SCIENCE CHINA-MATHEMATICS, 2014, 57 (10) : 2111 - 2122
  • [49] Genus fields of real biquadratic fields
    Yue, Qin
    RAMANUJAN JOURNAL, 2010, 21 (01): : 17 - 25
  • [50] Bounds for the number of points on curves over finite fields
    Arakelian, Nazar
    Borges, Herivelto
    ISRAEL JOURNAL OF MATHEMATICS, 2018, 228 (01) : 177 - 199