Hamilton-Jacobi Theory in the Calculus of Variations Under Partial Convexity Assumptions on the Lagrangian

被引:0
|
作者
Penot, Jean-Paul [1 ]
机构
[1] UPMC Univ, Sorbonne Univ, Paris, France
关键词
Subdifferential; value function; partial convexity; Lagrangian; Hamilton-Jacobi theory; calculus of variations;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using general results about subdifferentials of value functions, under partial convexity assumptions on the Lagrangian, we derive the main result about the Hamilton-Jacobi theory in the calculus of variations obtained by R. T. Rockafellar and P. Wolenski [Convexity in Hamilton-Jacobi theory, SIAM J. Control Optimization 39/5 (2000) 1323-1372] under full convexity of the Lagrangian. Since a number of results in the calculus of variations are known to be valid under such an assumption, it is tempting to tackle such an aim, even if the nice duality theory presented in the work cited above seems to be out of reach.
引用
收藏
页码:653 / 660
页数:8
相关论文
共 29 条
  • [1] A HAMILTON-JACOBI THEORY FOR SINGULAR LAGRANGIAN SYSTEMS IN THE SKINNER AND RUSK SETTING
    De Leon, Manuel
    Martin De Diego, David
    Vaquero, Miguel
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2012, 9 (08)
  • [2] A HAMILTON-JACOBI THEORY ON POISSON MANIFOLDS
    de Leon, Manuel
    Martin de Diego, David
    Vaquero, Miguel
    JOURNAL OF GEOMETRIC MECHANICS, 2014, 6 (01) : 121 - 140
  • [3] Hamilton-Jacobi Theory and Moving Frames
    Macarthur, Joshua D.
    McLenaghan, Raymond G.
    Smirnov, Roman G.
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2007, 3
  • [5] On the existence in a problem of the calculus of variations without convexity assumptions
    Smirnov G.V.
    Periodica Mathematica Hungarica, 2005, 51 (1) : 61 - 78
  • [6] Hamilton-Jacobi theory for gauge field theories
    de Leon, Manuel
    Zajac, Marcin
    JOURNAL OF GEOMETRY AND PHYSICS, 2020, 152
  • [7] Hamilton-Jacobi Theory for Periodic Control Problems
    Maffezzoni, C.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1974, 14 (01) : 21 - 29
  • [8] Hamilton-Jacobi theory, symmetries and coisotropic reduction
    de Leon, Manuel
    Martin de Diego, David
    Vaquero, Miguel
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2017, 107 (05): : 591 - 614
  • [9] HAMILTON-JACOBI THEORY IN CAUCHY DATA SPACE
    Campos, Cedric M.
    de Leon, Manuel
    Martin de Diego, David
    Vaquero, Miguel
    REPORTS ON MATHEMATICAL PHYSICS, 2015, 76 (03) : 359 - 387
  • [10] The Hamilton-Jacobi Theory for Contact Hamiltonian Systems
    de Leon, Manuel
    Lainz, Manuel
    Muniz-Brea, Alvaro
    MATHEMATICS, 2021, 9 (16)