Advancements in direct recycling technologies for lithium-ion battery cathodes: Overcoming challenges in cathode regeneration

被引:1
作者
Natarajan, Subramanian [1 ,2 ]
Noda, Suguru [1 ,2 ]
机构
[1] Waseda Univ, Dept Appl Chem, 3-4-1 Okubo,Shinjuku Ku, Tokyo 1698555, Japan
[2] Waseda Univ, Waseda Res Inst Sci & Engn, 3-4-1 Okubo,Shinjuku Ku, Tokyo 1698555, Japan
基金
日本学术振兴会;
关键词
Lithium-ion batteries; Cathodes; Direct recycling; Relithiation; Sustainability; SUPERCRITICAL CARBON-DIOXIDE; POSITIVE-ELECTRODE MATERIALS; VALUABLE METALS; ACTIVE MATERIAL; MECHANOCHEMICAL ACTIVATION; HEAT-TREATMENT; ORGANIC-ACIDS; TARTARIC ACID; RECOVERY; LI;
D O I
10.1016/j.mser.2025.100976
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Lithium-ion batteries (LIBs) currently dominate the energy storage landscape, generating a substantial volume of valuable waste resources at the end of their life and presenting additional recycling challenges and environmental hazards. Emerging direct recycling technologies offer promising solutions by rejuvenating spent electrode materials through simplified processes and surpassing traditional pyrometallurgical and hydrometallurgical technologies in terms of energy savings and carbon footprint reduction. The regeneration of high-value cathode materials has become especially interesting worldwide for reuse in the same battery applications, reducing dependence on raw materials and alleviating global supply chain burdens. Therefore, this review analyzes the current research in direct recycling technology, particularly relithiation techniques for restoring cathode performance without structural destruction, and sequential extraction steps and reuse in a straightforward manner. Advancements in direct recycling technologies such as chemical relithiation, electrochemical relithiation, solidstate sintering, and molten salts are discussed in detail for different cathode chemistries. Finally, the challenges present in direct recycling technologies are addressed to promote the regeneration process at an industrial level.
引用
收藏
页数:31
相关论文
共 50 条
  • [31] Achieving low-temperature hydrothermal relithiation by redox mediation for direct recycling of spent lithium-ion battery cathodes
    Yu, Xiaolu
    Yu, Sicen
    Yang, Zhenzhen
    Gao, Hongpeng
    Xu, Panpan
    Cai, Guorui
    Rose, Satchit
    Brooks, Christopher
    Liu, Ping
    Chen, Zheng
    ENERGY STORAGE MATERIALS, 2022, 51 : 54 - 62
  • [32] Life cycle assessment of lithium-ion battery recycling using pyrometallurgical technologies
    Rajaeifar, Mohammad Ali
    Raugei, Marco
    Steubing, Bernhard
    Hartwell, Anthony
    Anderson, Paul A.
    Heidrich, Oliver
    JOURNAL OF INDUSTRIAL ECOLOGY, 2021, 25 (06) : 1560 - 1571
  • [33] A comprehensive review of emerging technologies for recycling spent lithium-ion batteries
    Milian, Yanio E.
    Jamett, Nathalie
    Cruz, Constanza
    Herrera-Leon, Sebastian
    Chacana-Olivares, Jaime
    SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 910
  • [34] Advancements in lithium-ion battery recycling technologies: Exploring module-scale crushing and air separation techniques
    Choi, Junhyun
    Lee, Kyeonghyeon
    Kim, Kwanho
    Lee, Hoon
    PHYSICOCHEMICAL PROBLEMS OF MINERAL PROCESSING, 2024, 60 (06):
  • [35] Recycling of spent lithium-ion battery cathode materials by ammoniacal leaching
    Ku, Heesuk
    Jung, Yeojin
    Jo, Minsang
    Park, Sanghyuk
    Kim, Sookyung
    Yang, Donghyo
    Rhee, Kangin
    An, Eung-Mo
    Sohn, Jeongsoo
    Kwon, Kyungjung
    JOURNAL OF HAZARDOUS MATERIALS, 2016, 313 : 138 - 146
  • [36] Direct Recycling of Lithium-Ion Cathode: A Green Solution (Applied To Laptop Batteries)
    Gazulla, Maria F.
    Rodrigo, Marta
    Ventura, Maria J.
    Mallol, Gustavo
    Gomez, Maria P.
    Gilabert, Jessica
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2023, 170 (08)
  • [37] Environmental Impact Analysis of Waste Lithium-Ion Battery Cathode Recycling
    Sun, Xiaodong
    Ishchenko, Vitalii
    JOURNAL OF ECOLOGICAL ENGINEERING, 2024, 25 (07): : 352 - 358
  • [38] Direct Recycling of Cathode Materials from Spent Lithium-Ion Batteries: Principles, Strategies, and Perspectives
    Li, Sihan
    Wu, Zhan
    Zhang, Miaoquan
    Xu, Jianping
    Jin, Zheyu
    Gan, Yongping
    Xu, Zhihong
    Wang, Qingli
    Zhang, Wenkui
    Xia, Yang
    He, Xinping
    Zhang, Jun
    CHEMISTRY-A EUROPEAN JOURNAL, 2025,
  • [39] Cathode electrolysis for the comprehensive recycling of spent lithium-ion batteries
    Zhao, Jingjing
    Qu, Jiakang
    Qu, Xin
    Gao, Shuaibo
    Wang, Dihua
    Yin, Huayi
    GREEN CHEMISTRY, 2022, 24 (16) : 6179 - 6188
  • [40] A comprehensive review: Evaluating emerging green leaching technologies for recycling spent lithium-ion batteries
    Shi, Huiying
    Zhang, Jianfei
    Ou, Leming
    CHEMICAL ENGINEERING JOURNAL, 2025, 506