Design of photovoltaic materials assisted by machine learning and the mechanical tunability under micro-strain

被引:1
作者
Zhang, Ziyi [1 ]
Wang, Songya [1 ]
Chen, Changcheng [1 ]
Sun, Minghong [2 ]
Wang, Zhengjun [1 ]
Cai, Yan [1 ]
Tuo, Yali [1 ]
Du, Yuxi [1 ]
Han, Zhao [1 ]
Yun, Xiongfei [1 ]
Guan, Xiaoning [3 ]
Shi, Shaohang [4 ]
Xie, Jiangzhou [5 ]
Liu, Gang [3 ]
Lu, Pengfei [3 ]
机构
[1] Xian Univ Architecture & Technol, Sch Sci, Xian 710055, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Informat & Software Engn, Chengdu 610054, Peoples R China
[3] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
[4] Tsinghua Univ, Sch Architecture, Beijing 100080, Peoples R China
[5] Univ New South Wales, Sch Mech & Mfg Engn, Sydney, NSW 2052, Australia
来源
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY | 2025年 / 227卷
关键词
Double perovskite; Machine learning; Micro-strain; Mechanical properties; Photovoltaic applications; HALIDE PEROVSKITES; OPTICAL-PROPERTIES; ELASTIC-CONSTANTS; SOLAR-CELLS; TEMPERATURE; CHALLENGES; PREDICTION;
D O I
10.1016/j.jmst.2024.11.055
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In order to address the limited mechanical properties of silicon-based materials, this study designed 12 Bsite mixed-valence perovskites with s0 + s2 electronic configurations. Five machine learning models were used to predict the bandgap values of candidate materials, and Cs2 AgSbCl6 was selected as the optimal light absorbing material. By using first principles calculations under stress and strain, it has been determined that micro-strains can achieve the goals of reducing material strength, enhancing flexible characteristics, directionally adjusting the anisotropy of stress concentration areas, improving thermodynamic properties, and enhancing sound insulation ability without significantly affecting photoelectric properties. According to device simulations, tensile strain can effectively increase the theoretical efficiency of solar cells. This work elucidates the mechanism of mechanical property changes under stress and strain, offering insights into new materials for solar energy conversion and accelerating the development of high-performance photovoltaic devices. (c) 2025 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.
引用
收藏
页码:108 / 121
页数:14
相关论文
共 93 条
  • [1] Farghali M., Osman A.I., Mohamed I.M.A., Chen Z., Chen L., Ihara I., Yap P.S., Rooney D.W., Environ. Chem. Lett., 21, pp. 2003-2039, (2023)
  • [2] Kannan N., Vakeesan D., Renew Sust. Energy Rev., 62, pp. 1092-1105, (2016)
  • [3] Yuan K., Zhang T., Xie X., Du S., Xue X., Abdul-Manan A.F.N., Huang Z., J. Clean. Prod., 414, (2023)
  • [4] Woolway R.I., Zhao G., Rocha S.M.G., Thackeray S.J., Armstrong A., Nat. Water, 2, pp. 566-576, (2024)
  • [5] Duan L., Walter D., Chang N., Bullock J., Kang D., Phang S.P., Weber K., White T., Macdonald D., Catchpole K., Nat. Rev. Mater., 8, pp. 261-281, (2023)
  • [6] Li H., Li H., Lai Y., Yang Z., Yang Q., Liu Y., Zheng Z., Liu Y., Sun Y., Zhong B., Adv. Energy Mater., 12, (2022)
  • [7] Liu C., Xiao C., Xie C., Li W., Nano Energy, 89, (2021)
  • [8] Ballif C., Haug F.-J., Boccard M., Verlinden P.J., Hahn G., Nat. Rev. Mater., 7, pp. 597-616, (2022)
  • [9] Jiang Q., Tirawat R., Kerner R.A., Gaulding E.A., Xian Y., Wang X., Newkirk J.M., Yan Y., Berry J.J., Zhu K., Nature, 623, pp. 313-318, (2023)
  • [10] Rani U., Kamlesh P.K., Singh R., Kumar T., Gupta R., Al-Qaisi S., Kaur K., Verma A.S., Mod. Phys. Lett. B, 38, (2024)