Study of the Hibridation of Ablation Casting and Laser Wire Metal Deposition for Aluminum Alloy 5356

被引:0
|
作者
Fernandez-Calvo, Ana Isabel [1 ]
Madarieta, Mikel [2 ]
Solana, Ane [2 ]
Lizarralde, Ibon [1 ]
Rouco, Mikel [1 ]
Soriano, Carlos [2 ]
机构
[1] Basque Res & Technol Alliance BRTA, AZTERLAN, Aliendalde Auzunea 6, Durango 48200, Bizkaia, Spain
[2] Basque Res & Technol Alliance BRTA, Fdn Tekniker, Inaki Goenaga 5, Eibar 20600, Gipuzkoa, Spain
关键词
hybrid manufacturing; aluminium; 5356; alloy; additive manufacturing; laser metal wire deposition; casting; ablation casting; ND-YAG LASER; MECHANICAL-PROPERTIES; MICROSTRUCTURE;
D O I
10.3390/cryst15020134
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
The rapidly growing field of metal additive manufacturing (AM) has enabled the fabrication of near-net-shape components with complex 3D structures in a more reliable, productive, and sustainable way compared to any other manufacturing process. The productivity of AM could be significantly increased combining conventional and AM technologies. However, the application at an industrial level requires the validation of the AM process itself and the assurance of the soundness of the junction between the substrate and the deposited metal at a sufficiently rapid metal deposition rate. In this work, the validation of additively manufactured samples of Al-5356 alloy was performed. These were manufactured partially via an ablation casting process and partially via laser metal deposition using a metallic wire (LMwD). The deposited material showed low porosity levels, i.e., below 0.04%, and a small number of lack-of-union defects, which are detrimental to the mechanical properties. In the tensile samples centred at the junction between the ablated and deposited materials, it was found that when the AM part of the sample exhibited no lack-of-union defects, the region manufactured using LMwD showed higher strength than the ablation-cast part. These results suggest that the combination of ablation casting and LMwD is a competitive technique for the manufacturing of Al-5356 alloy parts with complex geometries.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Study on Forming Characteristics and Process Stability in Wire Arc Additive Manufacturing of 5356 Aluminum Alloy
    Yu, Qianxi
    Meng, Yunfei
    Xu, Jianeng
    Wu, Xu
    Guo, Xiaohan
    Xie, Yuhui
    Yang, Ziheng
    Chen, Hui
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2025,
  • [2] Effect of deposition strategies on microstructures, defects and mechanical properties of 5356 aluminum alloy by wire arc additive manufacturing
    Zhu, Kai
    Wang, Jian
    Zhang, Wei-chen
    Zhu, Xiao-lei
    Lu, Xiao-feng
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2024, 34 (02) : 423 - 434
  • [3] Effect of Heat Treatment on Wire + Arc Additive Manufactured Aluminum 5356 Alloy: Mechanical Properties and Microstructure Correlation
    N. Harshavardhana
    S. P Sundar Singh Sivam
    Rahul Ryan Savio
    Ahin Honymon
    V. Apramayan
    Gulshan Kumar
    Ashish Kumar Saxena
    Physics of Metals and Metallography, 2023, 124 : 1845 - 1855
  • [4] Influence of arc mode on the microstructure and mechanical properties of 5356 aluminum alloy fabricated by wire arc additive manufacturing
    Jiangang, Pan
    Bo, Yuan
    Jinguo, Ge
    Yu, Ren
    Hongjun, Chen
    Liang, Zhang
    Hao, Lu
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2022, 20 : 1893 - 1907
  • [5] Wire directed energy deposition of steel-aluminum structures using cold metal transfer process
    Kannan, Rangasayee
    Pierce, Dean
    Nayir, Selda
    Ul Ahsan, Rumman
    Kim, Duckbong
    Unocic, Kinga
    Lee, Yousub
    Jadhav, Sainand
    Karim, Md Abdul
    Nandwana, Peeyush
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 29 : 4537 - 4546
  • [6] Control of wire melting behavior during laser hot wire deposition of aluminum alloy
    Huang, Wenhao
    Xiao, Jun
    Chen, Shujun
    Jiang, Xiaoqing
    OPTICS AND LASER TECHNOLOGY, 2022, 150
  • [7] Microstructure and corrosion resistance properties of 5356 aluminum alloy fabricated by wire and arc additive manufacturing
    Liang, Jingheng
    Zheng, Ziqin
    Xu, Zhibao
    Wang, Shuai
    Han, Han
    CAILIAO GONGCHENG-JOURNAL OF MATERIALS ENGINEERING, 2025, 53 (02):
  • [8] Laser metal deposition of nickel coated Al 7050 alloy
    Singh, A.
    Ramakrishnan, A.
    Baker, D.
    Biswas, A.
    Dinda, G. P.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 719 : 151 - 158
  • [9] Effect of Heat Treatment on Wire plus Arc Additive Manufactured Aluminum 5356 Alloy: Mechanical Properties and Microstructure Correlation
    Harshavardhana, N.
    Sivam, S. P. Sundar Singh
    Savio, Rahul Ryan
    Honymon, Ahin
    Apramayan, V.
    Kumar, Gulshan
    Saxena, Ashish Kumar
    PHYSICS OF METALS AND METALLOGRAPHY, 2023, 124 (14): : 1845 - 1855
  • [10] Comparative Study of Pure Iron Manufactured by Selective Laser Melting, Laser Metal Deposition, and Casting Processes
    Carluccio, Danilo
    Bermingham, Michael
    Kent, Damon
    Demir, Ali Gokhan
    Previtali, Barbara
    Dargusch, Matthew S.
    ADVANCED ENGINEERING MATERIALS, 2019, 21 (07)