Evaluating the Performance of Artificial Intelligence-Based Large Language Models in Orthodontics-A Systematic Review and Meta-Analysis

被引:0
作者
Albalawi, Farraj [1 ,2 ]
Khanagar, Sanjeev B. [1 ,2 ]
Iyer, Kiran [1 ,2 ]
Alhazmi, Nora [1 ,2 ]
Alayyash, Afnan [3 ]
Alhazmi, Anwar S. [4 ]
Awawdeh, Mohammed [1 ,2 ]
Singh, Oinam Gokulchandra [2 ,5 ]
机构
[1] King Saud Bin Abdulaziz Univ Hlth Sci, Coll Dent, Prevent Dent Sci Dept, Riyadh 11426, Saudi Arabia
[2] Minist Natl Guard Hlth Affairs, King Abdullah Int Med Res Ctr, Riyadh 11481, Saudi Arabia
[3] Jouf Univ, Coll Dent, Dept Prevent Dent, Sakaka 72345, Saudi Arabia
[4] Jazan Univ, Coll Dent, Dept Prevent Dent, Jazan 45142, Saudi Arabia
[5] King Saud Bin Abdulaziz Univ Hlth Sci, Coll Appl Med Sci, Radiol Sci Program, Riyadh 11426, Saudi Arabia
来源
APPLIED SCIENCES-BASEL | 2025年 / 15卷 / 02期
关键词
artificial intelligence; deep learning; machine learning; large language models; orthodontics; clear aligners; knowledge; information; INFORMATION; QUALITY; CHATGPT;
D O I
10.3390/app15020893
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Background: In recent years, there has been remarkable growth in AI-based applications in healthcare, with a significant breakthrough marked by the launch of large language models (LLMs) such as ChatGPT and Google Bard. Patients and health professional students commonly utilize these models due to their accessibility. The increasing use of LLMs in healthcare necessitates an evaluation of their ability to generate accurate and reliable responses. Objective: This study assessed the performance of LLMs in answering orthodontic-related queries through a systematic review and meta-analysis. Methods: A comprehensive search of PubMed, Web of Science, Embase, Scopus, and Google Scholar was conducted up to 31 October 2024. The quality of the included studies was evaluated using the Prediction model Risk of Bias Assessment Tool (PROBAST), and R Studio software (Version 4.4.0) was employed for meta-analysis and heterogeneity assessment. Results: Out of 278 retrieved articles, 10 studies were included. The most commonly used LLM was ChatGPT (10/10, 100% of papers), followed by Google's Bard/Gemini (3/10, 30% of papers), and Microsoft's Bing/Copilot AI (2/10, 20% of papers). Accuracy was primarily evaluated using Likert scales, while the DISCERN tool was frequently applied for reliability assessment. The meta-analysis indicated that the LLMs, such as ChatGPT-4 and other models, do not significantly differ in generating responses to queries related to the specialty of orthodontics. The forest plot revealed a Standard Mean Deviation of 0.01 [CI: 0.42-0.44]. No heterogeneity was observed between the experimental group (ChatGPT-3.5, Gemini, and Copilot) and the control group (ChatGPT-4). However, most studies exhibited a high PROBAST risk of bias due to the lack of standardized evaluation tools. Conclusions: ChatGPT-4 has been extensively used for a variety of tasks and has demonstrated advanced and encouraging outcomes compared to other LLMs, and thus can be regarded as a valuable tool for enhancing educational and learning experiences. While LLMs can generate comprehensive responses, their reliability is compromised by the absence of peer-reviewed references, necessitating expert oversight in healthcare applications.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Detection of cerebral aneurysms using artificial intelligence: a systematic review and meta-analysis
    Din, Munaib
    Agarwal, Siddharth
    Grzeda, Mariusz
    Wood, David A.
    Modat, Marc
    Booth, Thomas C.
    JOURNAL OF NEUROINTERVENTIONAL SURGERY, 2023, 15 (03) : 262 - +
  • [22] Application of artificial intelligence in chronic liver diseases: a systematic review and meta-analysis
    Pakanat Decharatanachart
    Roongruedee Chaiteerakij
    Thodsawit Tiyarattanachai
    Sombat Treeprasertsuk
    BMC Gastroenterology, 21
  • [23] Application of artificial intelligence in chronic liver diseases: a systematic review and meta-analysis
    Decharatanachart, Pakanat
    Chaiteerakij, Roongruedee
    Tiyarattanachai, Thodsawit
    Treeprasertsuk, Sombat
    BMC GASTROENTEROLOGY, 2021, 21 (01)
  • [24] Application of Artificial Intelligence in Prediction of Ki-67 Index in Meningiomas: A Systematic Review and Meta-Analysis
    Hajikarimloo, Bardia
    Tos, Salem M.
    Alvani, Mohammadamin Sabbagh
    Rafiei, Mohammad Ali
    Akbarzadeh, Diba
    Shahireftekhar, Mohammad
    Akhlaghpasand, Mohammadhosein
    Habibi, Mohammad Amin
    WORLD NEUROSURGERY, 2025, 193 : 226 - 235
  • [25] Performance of artificial intelligence using oral and maxillofacial CBCT images: A systematic review and meta-analysis
    Badr, F. F.
    Jadu, F. M.
    NIGERIAN JOURNAL OF CLINICAL PRACTICE, 2022, 25 (11) : 1918 - 1927
  • [26] Accuracy of artificial intelligence in caries detection: a systematic review and meta-analysis
    Luke, Alexander Maniangat
    Rezallah, Nader Nabil Fouad
    HEAD & FACE MEDICINE, 2025, 21 (01)
  • [27] Application of artificial intelligence in laryngeal lesions: a systematic review and meta-analysis
    Marrero-Gonzalez, Alejandro R.
    Diemer, Tanner J.
    Nguyen, Shaun A.
    Camilon, Terence J. M.
    Meenan, Kirsten
    O'Rourke, Ashli
    EUROPEAN ARCHIVES OF OTO-RHINO-LARYNGOLOGY, 2025, 282 (03) : 1543 - 1555
  • [28] Artificial Intelligence for Detecting Cephalometric Landmarks: A Systematic Review and Meta-analysis
    Tavares Borges Mesquita, Germana de Queiroz
    Vieira, Walbert A.
    Campos Vidigal, Maria Tereza
    Nassif Travencolo, Bruno Augusto
    Beaini, Thiago Leite
    Spin-Neto, Rubens
    Paranhos, Luiz Renato
    de Brito Junior, Rui Barbosa
    JOURNAL OF DIGITAL IMAGING, 2023, 36 (03) : 1158 - 1179
  • [29] Wearable Artificial Intelligence for Detecting Anxiety: Systematic Review and Meta-Analysis
    Abd-alrazaq, Alaa
    Alsaad, Rawan
    Harfouche, Manale
    Aziz, Sarah
    Ahmed, Arfan
    Damseh, Rafat
    Sheikh, Javaid
    JOURNAL OF MEDICAL INTERNET RESEARCH, 2023, 25
  • [30] Artificial intelligence in antimicrobial stewardship: a systematic review and meta-analysis of predictive performance and diagnostic accuracy
    Pennisi, Flavia
    Pinto, Antonio
    Ricciardi, Giovanni Emanuele
    Signorelli, Carlo
    Gianfredi, Vincenza
    EUROPEAN JOURNAL OF CLINICAL MICROBIOLOGY & INFECTIOUS DISEASES, 2025, 44 (03) : 463 - 513