Mechanical properties and constitutive model of sisal fiber coral seawater concrete under uniaxial cyclic compression

被引:0
|
作者
Chen, Zongping [1 ,3 ]
Liang, Yan [1 ]
Qin, Qinquan [1 ]
Ning, Fan [2 ]
Liang, Ying [3 ]
机构
[1] Guangxi Univ, Coll Civil & Architectural Engn, Nanning 530004, Peoples R China
[2] Guangxi Vocat Normal Univ, Coll Civil & Architectural Engn, Nanning 530009, Peoples R China
[3] Nanning Univ, Coll Architecture & Civil Engn, Nanning 530200, Peoples R China
来源
JOURNAL OF BUILDING ENGINEERING | 2025年 / 100卷
关键词
Sisal fiber; Coral seawater concrete; Cyclic compression; Damage analysis; Stress-strain constitutive equation; BEHAVIOR; POLYPROPYLENE; DURABILITY;
D O I
10.1016/j.jobe.2024.111646
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
To investigate the mechanical properties of sisal fiber coral seawater concrete (SiF-CSC) under cyclic compression, 20 standard cylinder specimens in total were designed to carry out uniaxial monotonic compression and uniaxial cyclic compression tests with the volume content of sisal fiber (SiF) and loading mode as variables. Through experimental research, the failure mode was observed, and the whole failure process of SiF-CSC was recorded. The whole curves of monotonic compression and cyclic compression, important mechanical performance indexes such as peak stress and peak strain, plastic strain, stiffness degradation and energy dissipation were obtained. The stress-strain mechanical properties and damage evolution of SiF-CSC under uniaxial cyclic compression were analyzed. The results show that the strength of SiF-CSC under cyclic compression was weakened by 1.87 %similar to 6.22 % compared with that under monotonic compression, and the addition of sisal fiber was beneficial to delay the degradation of its strength. When the volume content of sisal fiber in coral seawater concrete (CSC) was 0.10 %, the peak stress and peak strain enhancement were the largest, which were 2.34 % and 10.11 % respectively. Under this volume content, the sisal fiber-reinforced CSC had the best effect. Increasing sisal fiber volume content could effectively reduce the accumulation of plastic strain under cyclic compression, improve the elastic stiffness and delay stiffness reduction. Besides, the addition of sisal fiber could effectively delay energy dissipation during cyclic compression, and the maximum increase in total energy dissipation capacity was 51.36 %. In this paper, according to the characteristics of the cyclic compression curve, the four characteristic points, i.e., unloading point, common point, residual point and end point were defined. Based on this, the relationship equations of unloading point strain, common point strain, residual point strain and end point strain were established. Finally, the stress-strain constitutive equation model and damage constitutive model of SiF-CSC under cyclic compression were proposed, which can better predict the mechanical behavior of SiF-CSC under cyclic compression.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Study of the mechanical properties and constitutive model of the roadbed rehabilitation polyurethane grouting materials under uniaxial compression
    Fang, Hongyuan
    Zheng, Qiankun
    Du, Mingrui
    Liu, Jianhua
    Zhang, Chao
    Wang, Zhenyang
    Wang, Fuming
    JOURNAL OF APPLIED POLYMER SCIENCE, 2022, 139 (22)
  • [22] Mechanical properties, damage evolution, and constitutive model of rock-encased backfill under uniaxial compression
    Wang, Jie
    Fu, Jianxin
    Song, Weidong
    Zhang, Yongfang
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 285
  • [23] Mechanical properties and failure criteria of carbon fiber-reinforced coral concrete under biaxial compression
    Liu, Bing
    Wang, Yang
    Mei, Hao
    Ming, Yang
    Guo, Jianhua
    Liu, Qingfeng
    Qian, Kai
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 446
  • [24] Mechanical properties and damage constitutive of recycled aggregate concrete with polyvinyl alcohol fiber under compression and shear
    Chen, Yuliang
    Zhang, Shaosong
    Ye, Peihuan
    Liang, Xin
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2022, 17
  • [25] Mechanical properties of hybrid fiber reinforced coral concrete
    Liu, Bing
    Zhang, Xuanyu
    Ye, Junpeng
    Liu, Xiaoyan
    Deng, Zhiheng
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2022, 16
  • [26] The study on uniaxial compression constitutive model of shape memory alloy fiber-reinforced concrete
    Shi, Mingfang
    Xu, Guangping
    Zhao, Jitao
    Xu, Lidan
    Yuan, Jiaqi
    Chen, Ming
    JOURNAL OF BUILDING ENGINEERING, 2024, 89
  • [27] Experimental study and numerical simulation of impact compression mechanical properties of high strength coral aggregate seawater concrete
    Ma, Haiyan
    Yue, Chengjun
    Yu, Hongfa
    Mei, Qiquan
    Chen, Li
    Zhang, Jinhua
    Zhang, Yadong
    Jiang, Xiquan
    INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2020, 137
  • [28] Creep properties and damage constitutive model of salt rock under uniaxial compression
    Wang, Junbao
    Zhang, Qiang
    Song, Zhanping
    Zhang, Yuwei
    INTERNATIONAL JOURNAL OF DAMAGE MECHANICS, 2020, 29 (06) : 902 - 922
  • [29] Mechanical properties and damage constitutive relationship of microwave irradiation of granite under uniaxial compression
    Li, Diyuan
    Lyu, Xinxin
    Zhou, Aohui
    Ru, Wenkai
    Su, Xiaoli
    JOURNAL OF THERMAL STRESSES, 2024, 47 (11) : 1519 - 1538
  • [30] Physical and Mechanical Properties Evolution of Coal Subjected to Salty Solution and a Damage Constitutive Model under Uniaxial Compression
    Wang, Min
    Guo, Qifeng
    Tian, Yakun
    Dai, Bing
    MATHEMATICS, 2021, 9 (24)