Rational Design of Catalytically Active Sites in Metal-Free Carbon Materials for Electrocatalytic CO2 Reduction: A Review

被引:0
|
作者
Chen, Shaoqin [1 ]
Hu, Yun Hang [1 ]
机构
[1] Michigan Technol Univ, Dept Mat Sci & Engn, Houghton, MI 49931 USA
关键词
ELECTROCHEMICAL REDUCTION; ELECTRONIC-STRUCTURE; DOPED GRAPHENE; NITROGEN; EFFICIENT; DEFECT; ELECTROREDUCTION; DIOXIDE; CATALYST; CONVERSION;
D O I
10.1021/acs.energyfuels.5c00352
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Electrocatalytic conversion of carbon dioxide (CO2) into value-added chemicals is a promising avenue for reducing greenhouse gas emissions while storing renewable energy in its chemical form. Metal-free carbon-based materials have attracted growing interest as electrocatalysts for CO2 reduction due to their abundance, low cost, stability, and tunable electronic structures. However, pristine carbon materials, such as graphene, lack catalytic activity due to the weak physisorption of CO2, necessitating the creation of active sites to boost electrocatalytic performance. In this review, we highlight recent advances in tailoring carbon frameworks through two key strategies to enhance the performance of electrocatalytic CO2 reduction. The first strategy, heteroatom doping-including nitrogen, phosphorus, boron, and fluorine-creates localized electronic states that direct reaction pathways toward specific products. The second strategy involves engineering defects, such as vacancies or pentagonal/octagonal ring structures, which significantly boost local electron density and adsorbate binding affinity, thereby lowering CO2 activation barriers. By creating these active sites, the electrocatalytic performance of carbon materials can be enhanced by over 2 orders of magnitude compared with inert carbon. Additionally, mechanistic insights from both experimental and computational studies are discussed, illustrating how electronic reconfiguration, spin density, and local coordination environments govern catalytic activity and selectivity. Finally, we outline challenges and future research directions for achieving sustainable CO2 electroreduction.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Metal- and Carbon-Based Materials as Heterogeneous Electrocatalysts for CO2 Reduction
    Khan, Azam
    Ullah, Haseeb
    Nasir, Jamal Abdul
    Shuda, Suzanne
    Chen, Wei
    Khan, M. Abdullah
    Zia-ur-Rehman
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2018, 18 (05) : 3031 - 3048
  • [42] Metal-Free SeBN Ternary-Doped Porous Carbon as Efficient Electrocatalysts for CO2 Reduction Reaction
    Wang, Wei
    Han, Juan
    Sun, Yan
    Zhang, Miao
    Zhou, Shiqi
    Zhao, Kai
    Yuan, Jiayin
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (09) : 10518 - 10525
  • [43] Investigating the Nature of the Active Sites for the CO2 Reduction Reaction on Carbon-Based Electrocatalysts
    Asset, Tristan
    Garcia, Samuel T.
    Herrera, Sergio
    Andersen, Nalin
    Chen, Yechuan
    Peterson, Eric J.
    Matanovic, Ivana
    Artyushkova, Kateryna
    Lee, Jack
    Minteer, Shelley D.
    Dai, Sheng
    Pan, Xiaoqing
    Chavan, Kanchan
    Barton, Scott Calabrese
    Atanassov, Plamen
    ACS CATALYSIS, 2019, 9 (09): : 7668 - 7678
  • [44] Metal-Free Reduction of CO2 with Hydroboranes: Two Efficient Pathways at Play for the Reduction of CO2 to Methanol
    Gomes, Christophe Das Neves
    Blondiaux, Enguerrand
    Thuery, Pierre
    Cantat, Thibault
    CHEMISTRY-A EUROPEAN JOURNAL, 2014, 20 (23) : 7098 - 7106
  • [45] Theoretical Insight on Highly Efficient Electrocatalytic CO2 Reduction Reaction of Monoatom Dispersion Catalyst (Metal-Nitrogen-Carbon)
    Zhang, Zhijia
    Guo, Ling
    Han, Yu
    Jiao, Lingxiao
    ELECTROCATALYSIS, 2021, 12 (04) : 390 - 402
  • [46] Volcano Trend in Electrocatalytic CO2 Reduction Activity over Atomically Dispersed Metal Sites on Nitrogen-Doped Carbon
    Li, Jingkun
    Prslja, Paulina
    Shinagawa, Tatsuya
    Martin Fernandez, Antonio Jose
    Krumeich, Frank
    Artyushkova, Kateryna
    Atanassov, Plamen
    Zitolo, Andrea
    Zhou, Yecheng
    Garcia-Muelas, Rodrigo
    Lopez, Nuria
    Perez-Ramirez, Javier
    Jaouen, Frederic
    ACS CATALYSIS, 2019, 9 (11) : 10426 - 10439
  • [47] Aqueous electrocatalytic CO2 reduction using metal complexes dispersed in polymer ion gels
    Sato, Shunsuke
    McNicholas, Brendon J.
    Grubbs, Robert H.
    CHEMICAL COMMUNICATIONS, 2020, 56 (32) : 4440 - 4443
  • [48] Biomimetic Metal-Free Hydride Donor Catalysts for CO2 Reduction
    Ilic, Stefan
    Gesiorski, Jonathan L.
    Weerasooriya, Ravindra B.
    Glusac, Ksenija D.
    ACCOUNTS OF CHEMICAL RESEARCH, 2022, 55 (06) : 844 - 856
  • [49] Benzimidazoles as Metal-Free and Recyclable Hydrides for CO2 Reduction to Formate
    Lim, Chern-Hooi
    Ilic, Stefan
    Alherz, Abdulaziz
    Worrell, Brady T.
    Bacon, Samuel S.
    Hynes, James T.
    Glusac, Ksenija D.
    Musgrave, Charles B.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (01) : 272 - 280
  • [50] Linkage Engineering in Covalent Organic Frameworks for Metal-Free Electrocatalytic C2H4 Production from CO2
    Xiao, Yang
    Lu, Jie
    Chen, Kean
    Cao, Yuliang
    Gong, Chengtao
    Ke, Fu-Sheng
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (26)