A NOVEL HYBRID DEEP LEARNING APPROACH FOR 3D OBJECT DETECTION AND TRACKING IN AUTONOMOUS DRIVING

被引:0
|
作者
Dheepika, P. S. [1 ]
Umadevi, V [1 ]
机构
[1] Bharathidasan Univ, Nehru Mem Coll, Dept Comp Sci, Tiruchirapalli 621007, India
来源
COMPUTER SCIENCE-AGH | 2024年 / 25卷 / 03期
关键词
3D object detection; object tracking; hybrid deep learning; pre-processing; segmentation; sensor image fusion; CAMERA;
D O I
10.7494/csci.2024.25.3.5597
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Recently Object detection and tracking using fusion of LiDAR and RGB camera for the autonomous vehicle environment is a challenging task. The existing works initiates several object detection and tracking frameworks using Artificial Intelligence (AI) algorithms. However, they were limited with high false positives and computation time issues thus lacking the performance of autonomous driving environment. The existing issues are resolved by proposing Hybrid Deep Learning based Multi Object Detection and Tracking (HDL-MODT) using sensor fusion methods. The proposed work performs fusion of solid state LiDAR, Pseudo LiDAR, and RGB camera for improving detection and tracking quality. At first, the multi-stage preprocessing is done in which noise removal is performed using Adaptive Fuzzy Filter (A-Fuzzy). The pre-processed fused image is then provided for instance segmentation to reduce the classification and tracking complexity. For that, the proposed work adopts Lightweight General Adversarial Networks (LGAN). The segmented image is provided for object detection and tracking using HDL. For reducing the complexity, the proposed work utilized VGG-16 for feature extraction which forms the feature vectors. The features vectors are then provided for object detection using YOLOv4. Finally, the detected objects were tracked using Improved Unscented Kalman Filter (IUKF) and mapping the vehicles using time based mapping by considering their RFID, velocity, location, dimension and unique ID. The simulation of the proposed work is carried out using MATLAB R2020a simulation tool and performance of the proposed work is compared with several metrics that show that the proposed work outperforms than the existing works.
引用
收藏
页码:1 / 33
页数:33
相关论文
共 50 条
  • [1] Survey on deep learning-based 3D object detection in autonomous driving
    Liang, Zhenming
    Huang, Yingping
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2023, 45 (04) : 761 - 776
  • [2] Deep Learning Frontiers in 3D Object Detection: A Comprehensive Review for Autonomous Driving
    Pravallika, Ambati
    Hashmi, Mohammad Farukh
    Gupta, Aditya
    IEEE ACCESS, 2024, 12 : 173936 - 173980
  • [3] A Survey on Deep-Learning-Based LiDAR 3D Object Detection for Autonomous Driving
    Alaba, Simegnew Yihunie
    Ball, John E.
    SENSORS, 2022, 22 (24)
  • [4] Monocular 3D Object Detection for Autonomous Driving
    Chen, Xiaozhi
    Kundu, Kaustav
    Zhang, Ziyu
    Ma, Huimin
    Fidler, Sanja
    Urtasun, Raquel
    2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 2147 - 2156
  • [5] 3D Object Detection for Autonomous Driving: A Survey
    Qian, Rui
    Lai, Xin
    Li, Xirong
    PATTERN RECOGNITION, 2022, 130
  • [6] Lightweight Map-Enhanced 3D Object Detection and Tracking for Autonomous Driving
    Gong, Lei
    Wang, Shunhong
    Zhang, Yu
    Zhang, Yanyong
    Ji, Jianmin
    THE 12TH ASIA-PACIFIC SYMPOSIUM ON INTERNETWARE, INTERNETWARE 2020, 2021, : 165 - 174
  • [7] Improving Deep Multi-modal 3D Object Detection for Autonomous Driving
    Khamsehashari, Razieh
    Schill, Kerstin
    2021 7TH INTERNATIONAL CONFERENCE ON AUTOMATION, ROBOTICS AND APPLICATIONS (ICARA 2021), 2021, : 263 - 267
  • [8] A comprehensive survey of LIDAR-based 3D object detection methods with deep learning for autonomous driving
    Zamanakos, Georgios
    Tsochatzidis, Lazaros
    Amanatiadis, Angelos
    Pratikakis, Ioannis
    COMPUTERS & GRAPHICS-UK, 2021, 99 : 153 - 181
  • [9] 3D Object Detection for Autonomous Driving: A Practical Survey
    Ramajo-Ballester, Alvaro
    de la Escalera Hueso, Arturo
    Armingol Moreno, Jose Maria
    PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON VEHICLE TECHNOLOGY AND INTELLIGENT TRANSPORT SYSTEMS, VEHITS 2023, 2023, : 64 - 73
  • [10] 3D Object Detection for Autonomous Driving: A Comprehensive Survey
    Jiageng Mao
    Shaoshuai Shi
    Xiaogang Wang
    Hongsheng Li
    International Journal of Computer Vision, 2023, 131 : 1909 - 1963