Oriented molecular bridge at the buried interface enables cesium-lead perovskite solar cells with 22.04 % efficiency

被引:0
|
作者
Zhang, Junqi [1 ]
Gao, Fei [1 ]
Wang, Zhiteng [1 ]
Li, Yanyang [1 ]
Lang, Lei [1 ]
Zhou, Tianxiang [1 ]
Li, Rui [1 ]
Yang, Fei [1 ]
Tian, Qingwen [1 ]
Liu, Shengzhong [1 ,2 ,3 ]
机构
[1] Shaanxi Normal Univ, Sch Mat Sci & Engn, Key Lab Appl Surface & Colloid Chem, Shaanxi Key Lab Adv Energy Devices,Minist Educ,Sha, Xian 710119, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Dalian Inst Chem Phys, Dalian 116023, Peoples R China
基金
中国国家自然科学基金;
关键词
CsPbI 3 _x Br x; All-inorganic perovskite solar cells; Molecular bridge; Defect passivation; The buried interface; TIO2; AIR;
D O I
10.1016/j.nanoen.2024.110633
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Meticulous engineering of the buried interface between the TiO2 electron-transport layer and the CsPbI3-xBrx perovskite is crucial for interfacial charge transport and perovskite crystallization, thereby minimizing energy losses and achieving highly efficient and stable inorganic perovskite solar cells (PSCs). Herein, a functional molecular bridge is deliberately designed by integrating 3,4-thiophene dicarboxylic acid (TDDA) between the CsPbI3-xBrx perovskite and TiO2 layer. It is demonstrated that the TDDA molecule exhibits a higher affinity towards the TiO2 surface, forming tetradentate chelation through two C--O center dot center dot center dot Ti bonds and two C-O-H center dot center dot center dot O bonds. Subsequently, it establishes a connection with perovskite via thiophene S-Pb interaction, thus creating an oriented molecular bridge at the buried interface. This effectively enhances charge extraction, passivates bilateral interfacial defects, alleviates lattice strain, and improves perovskite crystallization. Consequently, the combination of these advantageous characteristics results in a power conversion efficiency (PCE) of 22.04 % for a target CsPbI3-xBrx device with an active area of 0.09 cm2. Importantly, when scaled up to larger-area devices with an active area of 1.0 cm2, an remarkable PCE of 18.29 % was achieved. Furthermore, the stabilities of both perovskite films and corresponding PSCs were significantly enhanced through this molecular bridge strategy.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Oriented Molecular Bridge Constructs Homogeneous Buried Interface for Perovskite Solar Cells with Efficiency Over 25.3%
    Wang, Xinxin
    Huang, Hao
    Wang, Min
    Lan, Zhineng
    Cui, Peng
    Du, Shuxian
    Yang, Yingying
    Yan, Luyao
    Zhang, Qiang
    Qu, Shujie
    Li, Meicheng
    ADVANCED MATERIALS, 2024, 36 (16)
  • [2] Buried Interface Molecular Hybrid Enables Efficient Perovskite Solar Cells
    黄天宇
    朱瑞
    罗德映
    Chinese Physics Letters, 2024, 41 (09) : 108 - 109
  • [3] Buried Interface Molecular Hybrid Enables Efficient Perovskite Solar Cells
    Huang, Tianyu
    Zhu, Rui
    Luo, Deying
    CHINESE PHYSICS LETTERS, 2024, 41 (09)
  • [4] Molecular Bridge on Buried Interface for Efficient and Stable Perovskite Solar Cells
    Guo, Haodan
    Xiang, Wanchun
    Fang, Yanyan
    Li, Jingrui
    Lin, Yuan
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (34)
  • [5] Target Therapy for Buried Interface Enables Stable Perovskite Solar Cells with 25.05% Efficiency
    Ji, Xiaofei
    Bi, Leyu
    Fu, Qiang
    Li, Bolin
    Wang, Junwei
    Jeong, Sang Young
    Feng, Kui
    Ma, Suxiang
    Liao, Qiaogan
    Lin, Francis R.
    Woo, Han Young
    Lu, Linfeng
    Jen, Alex K. -Y.
    Guo, Xugang
    ADVANCED MATERIALS, 2023, 35 (39)
  • [6] Cesium-lead based inorganic perovskite quantum-dots as interfacial layer for highly stable perovskite solar cells with exceeding 21% efficiency
    Akin, Seckin
    Altintas, Yemliha
    Mutlugun, Evren
    Sonmezoglu, Savas
    NANO ENERGY, 2019, 60 : 557 - 566
  • [7] Cesium Lead Chloride Nanocrystals Interface Blocking Layer Enables Stable and Efficient Perovskite Solar Cells
    Zhao, Tianyu
    Zhang, Yiyan
    Qu, Jiafan
    Gao, Bo
    Sun, Lijie
    Wang, Xunchun
    Chen, Guanying
    ADVANCED FUNCTIONAL MATERIALS, 2025,
  • [8] Multifunctional molecular linker on buried interface for efficient and stable cesium-formamidinium perovskite solar cells
    Wu, Yan
    Wang, Yu
    Song, Jiaxing
    Wu, Xianrui
    Zhao, Yongkang
    Li, Huinan
    Yin, Xinxing
    Hu, Lin
    Su, Zhen
    Jin, Yingzhi
    Zhang, Xinyu
    Cheng, Yongliang
    Li, Zaifang
    APPLIED PHYSICS LETTERS, 2024, 124 (07)
  • [9] Suppressed deprotonation enables a durable buried interface in tin-lead perovskite for all-perovskite tandem solar cells
    Fu, Sheng
    Sun, Nannan
    Xian, Yeming
    Chen, Lei
    Li, You
    Li, Chongwen
    Abudulimu, Abasi
    Kaluarachchi, Prabodika N.
    Huang, Zixu
    Wang, Xiaoming
    Dolia, Kshitiz
    Ginger, David S.
    Heben, Michael J.
    Ellingson, Randy J.
    Chen, Bin
    Sargent, Edward H.
    Song, Zhaoning
    Yan, Yanfa
    JOULE, 2024, 8 (08) : 2220 - 2237
  • [10] Multifunctional Buried Interface Modification Enables Efficient Tin Perovskite Solar Cells
    Chen, Yali
    Qi, Heng
    Wang, Kun
    Kang, Ziyong
    Pan, Guangjiu
    Everett, Christopher R.
    Mueller-Buschbaum, Peter
    Tong, Yu
    Wang, Hongqiang
    SMALL METHODS, 2024, 8 (02)