The role of machine learning in decoding the molecular complexity of bovine pregnancy: a review

被引:0
作者
van Rumpt, Marilijn [1 ]
Rabaglino, M. Belen [1 ]
机构
[1] Univ Utrecht, Dept Populat Hlth Sci, Fac Vet Med, Utrecht, Netherlands
关键词
bovine; embryo; endometrium; epigenomics; fetus; machine learning; metabolomics; molecular data; omics technologies; pregnancy; pregnancy outcome prediction; transcriptomics; IN-VIVO; EMBRYOS; FERTILITY; SELECTION; CATTLE; CLASSIFICATION; ENDOMETRIUM; MECHANISMS; EXPRESSION; SURVIVAL;
D O I
10.1071/RD24141
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Pregnancy establishment and progression in cattle are pivotal research areas with significant implications for the industry. Despite high fertilization rates, similar to 50% of bovine pregnancies are lost, pinpointing the need to keep studying the biological principles leading to a successful pregnancy. The increasing access to and generation of omics data have aided in defining the molecular characteristics of pregnancy, i.e. embryo and fetal development and communication with the maternal environment. Large datasets generated through omics technologies are usually analyzed through pipelines that could lack the power to deeply explore the complexity of biological data. Machine learning (ML), a branch of artificial intelligence, offers a promising approach to address this challenge by effectively handling large-scale, heterogeneous and high-dimensional data. This review explores the role of ML in unraveling the intricacies of bovine embryo-maternal communication, including the identification of biomarkers associated with pregnancy outcome prediction and uncovering key genes and pathways involved in embryo development and survival. Through discussing recent studies, we define the contributions of ML towards advancing our understanding of bovine pregnancy, with the final goal of reducing pregnancy losses and enhancing reproductive efficiency while also addressing current limitations and future perspectives of ML in this field.
引用
收藏
页数:13
相关论文
共 87 条
[1]   Transcriptomics analysis of the bovine endometrium during the perioestrus period [J].
Alfattah, Mohammed A. ;
Correia, Carolina N. ;
Browne, John A. ;
McGettigan, Paul A. ;
Pluta, Katarzyna ;
Carrington, Stephen D. ;
MacHugh, David E. ;
Irwin, Jane A. .
PLOS ONE, 2024, 19 (03)
[2]   Morpho-physical Recording of Bovine Conceptus (Bos indicus) and Placenta from Days 20 to 70 of Pregnancy [J].
Assis Neto, A. C. ;
Pereira, F. T. V. ;
Santos, T. C. ;
Ambrosio, C. E. ;
Leiser, R. ;
Miglino, M. A. .
REPRODUCTION IN DOMESTIC ANIMALS, 2010, 45 (05) :760-772
[3]   Dynamic Changes in the Proteome of Early Bovine Embryos Developed In Vivo [J].
Banliat, Charles ;
Mahe, Coline ;
Lavigne, Regis ;
Com, Emmanuelle ;
Pineau, Charles ;
Labas, Valerie ;
Guyonnet, Benoit ;
Mermillod, Pascal ;
Saint-Dizier, Marie .
FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2022, 10
[4]   The endometrium responds differently to cloned versus fertilized embryos [J].
Bauersachs, Stefan ;
Ulbrich, Susanne E. ;
Zakhartchenko, Valeri ;
Minten, Megan ;
Reichenbach, Myriam ;
Reichenbach, Horst-Dieter ;
Blum, Helmut ;
Spencer, Thomas E. ;
Wolf, Eckhard .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (14) :5681-5686
[5]   Embryo loss in cattle between Days 7 and 16 of pregnancy [J].
Berg, D. K. ;
van Leeuwen, J. ;
Beaumont, S. ;
Berg, M. ;
Pfeffer, P. L. .
THERIOGENOLOGY, 2010, 73 (02) :250-260
[6]  
Bó GA, 2013, ANIM REPROD, V10, P344
[7]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[8]   Extracellular Vesicles Mediated Early Embryo-Maternal Interactions [J].
Bridi, Alessandra ;
Perecin, Felipe ;
da Silveira, Juliano Coelho .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (03)
[9]   Multicolor flow cytometric analysis of cryopreserved bovine sperm: A tool for the evaluation of bull fertility [J].
Bucher, K. ;
Malama, E. ;
Siuda, M. ;
Janett, F. ;
Bollwein, H. .
JOURNAL OF DAIRY SCIENCE, 2019, 102 (12) :11652-11669
[10]   Can in vitro embryo production be estimated from semen variables in Senepol breed by using artificial intelligence? [J].
Campanholi, Suzane Peres ;
Garcia Neto, Sebastiao ;
Pinheiro, Gabriel Martins ;
Nogueira, Marcelo Fabio Gouveia ;
Rocha, Jose Celso ;
Losano, Joao Diego de Agostini ;
Siqueira, Adriano Felipe Perez ;
Nichi, Marcilio ;
Assumpcao, Mayra Elena Ortiz D'Avila ;
Basso, Andrea Cristina ;
Monteiro, Fabio Morato ;
Gimenes, Lindsay Unno .
FRONTIERS IN VETERINARY SCIENCE, 2023, 10