Boundary effects on the emergence of quasi-periodic solutions for Euler equations

被引:3
作者
Hassainia, Zineb [1 ]
Roulley, Emeric [2 ]
机构
[1] New York Univ Abu Dhabi, NYUAD Res Inst, POB 129188, Abu Dhabi, U Arab Emirates
[2] Univ Rennes, CNRS, IRMAR UMR 6625, F-35000 Rennes, France
关键词
fluid mechanics; Euler equations; vortex patches; KAM theory; Nash-Moser scheme; quasi-periodic solutions; NONLINEAR-WAVE EQUATIONS; V-STATES; KAM TORI; PERTURBATIONS; BIFURCATION; STATIONARY; REGULARITY; PATCHES; FLUID;
D O I
10.1088/1361-6544/ad9ba7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we highlight the importance of the boundary effects on the construction of quasi-periodic vortex patches solutions close to Rankine vortices and whose existence is not known in the whole space due to the resonances of the linear frequencies. Availing of the lack of invariance by radial dilation of Euler equations in the unit disc and using a Nash-Moser implicit function iterative scheme we show the existence of such structures when the radius of the Rankine vortex belongs to a suitable massive Cantor-like set with almost full Lebesgue measure.
引用
收藏
页数:81
相关论文
共 68 条
[41]   MULTIPOLE VORTEX PATCH EQUILIBRIA FOR ACTIVE SCALAR EQUATIONS [J].
Hassainia, Zineb ;
Wheeler, Miles H. .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2022, 54 (06) :6054-6095
[42]   STEADY ASYMMETRIC VORTEX PAIRS FOR EULER EQUATIONS [J].
Hassainia, Zineb ;
Hmidi, Taoufik .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2021, 41 (04) :1939-1969
[43]   Global Bifurcation of Rotating Vortex Patches [J].
Hassainia, Zineb ;
Masmoudi, Nader ;
Wheeler, Miles H. .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2020, 73 (09) :1933-1980
[44]  
Hmidi T., Mmoires de la Socit Mathmatique de France
[45]   Existence of Corotating and Counter-Rotating Vortex Pairs for Active Scalar Equations [J].
Hmidi, Taoufik ;
Mateu, Joan .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 350 (02) :699-747
[46]   BIFURCATION OF ROTATING PATCHES FROM KIRCHHOFF VORTICES [J].
Hmidi, Taoufik ;
Mateu, Joan .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (10) :5401-5422
[47]   Degenerate bifurcation of the rotating patches [J].
Hmidi, Taoufik ;
Mateu, Joan .
ADVANCES IN MATHEMATICS, 2016, 302 :799-850
[48]   On the trivial solutions for the rotating patch model [J].
Hmidi, Taoufik .
JOURNAL OF EVOLUTION EQUATIONS, 2015, 15 (04) :801-816
[49]   On rotating doubly connected vortices [J].
Hmidi, Taoufik ;
Mateu, Joan ;
Verdera, Joan .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 258 (04) :1395-1429
[50]   Boundary Regularity of Rotating Vortex Patches [J].
Hmidi, Taoufik ;
Mateu, Joan ;
Verdera, Joan .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2013, 209 (01) :171-208